Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
coe1term
Next ⟩
dgr1term
Metamath Proof Explorer
Ascii
Unicode
Theorem
coe1term
Description:
The coefficient function of a monomial.
(Contributed by
Mario Carneiro
, 26-Jul-2014)
Ref
Expression
Hypothesis
coe1term.1
⊢
F
=
z
∈
ℂ
⟼
A
⁢
z
N
Assertion
coe1term
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
coeff
⁡
F
⁡
M
=
if
M
=
N
A
0
Proof
Step
Hyp
Ref
Expression
1
coe1term.1
⊢
F
=
z
∈
ℂ
⟼
A
⁢
z
N
2
1
coe1termlem
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
coeff
⁡
F
=
n
∈
ℕ
0
⟼
if
n
=
N
A
0
∧
A
≠
0
→
deg
⁡
F
=
N
3
2
simpld
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
coeff
⁡
F
=
n
∈
ℕ
0
⟼
if
n
=
N
A
0
4
3
fveq1d
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
coeff
⁡
F
⁡
M
=
n
∈
ℕ
0
⟼
if
n
=
N
A
0
⁡
M
5
4
3adant3
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
coeff
⁡
F
⁡
M
=
n
∈
ℕ
0
⟼
if
n
=
N
A
0
⁡
M
6
eqid
⊢
n
∈
ℕ
0
⟼
if
n
=
N
A
0
=
n
∈
ℕ
0
⟼
if
n
=
N
A
0
7
eqeq1
⊢
n
=
M
→
n
=
N
↔
M
=
N
8
7
ifbid
⊢
n
=
M
→
if
n
=
N
A
0
=
if
M
=
N
A
0
9
simp3
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
M
∈
ℕ
0
10
simp1
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
A
∈
ℂ
11
0cn
⊢
0
∈
ℂ
12
ifcl
⊢
A
∈
ℂ
∧
0
∈
ℂ
→
if
M
=
N
A
0
∈
ℂ
13
10
11
12
sylancl
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
if
M
=
N
A
0
∈
ℂ
14
6
8
9
13
fvmptd3
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
n
∈
ℕ
0
⟼
if
n
=
N
A
0
⁡
M
=
if
M
=
N
A
0
15
5
14
eqtrd
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
coeff
⁡
F
⁡
M
=
if
M
=
N
A
0