Metamath Proof Explorer


Theorem coe1term

Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis coe1term.1 F = z A z N
Assertion coe1term A N 0 M 0 coeff F M = if M = N A 0

Proof

Step Hyp Ref Expression
1 coe1term.1 F = z A z N
2 1 coe1termlem A N 0 coeff F = n 0 if n = N A 0 A 0 deg F = N
3 2 simpld A N 0 coeff F = n 0 if n = N A 0
4 3 fveq1d A N 0 coeff F M = n 0 if n = N A 0 M
5 4 3adant3 A N 0 M 0 coeff F M = n 0 if n = N A 0 M
6 eqid n 0 if n = N A 0 = n 0 if n = N A 0
7 eqeq1 n = M n = N M = N
8 7 ifbid n = M if n = N A 0 = if M = N A 0
9 simp3 A N 0 M 0 M 0
10 simp1 A N 0 M 0 A
11 0cn 0
12 ifcl A 0 if M = N A 0
13 10 11 12 sylancl A N 0 M 0 if M = N A 0
14 6 8 9 13 fvmptd3 A N 0 M 0 n 0 if n = N A 0 M = if M = N A 0
15 5 14 eqtrd A N 0 M 0 coeff F M = if M = N A 0