Step |
Hyp |
Ref |
Expression |
1 |
|
coe1term.1 |
|
2 |
|
ssid |
|
3 |
1
|
ply1term |
|
4 |
2 3
|
mp3an1 |
|
5 |
|
simpr |
|
6 |
|
simpl |
|
7 |
|
0cn |
|
8 |
|
ifcl |
|
9 |
6 7 8
|
sylancl |
|
10 |
9
|
adantr |
|
11 |
10
|
fmpttd |
|
12 |
|
eqid |
|
13 |
|
eqeq1 |
|
14 |
13
|
ifbid |
|
15 |
|
simpr |
|
16 |
|
ifcl |
|
17 |
6 7 16
|
sylancl |
|
18 |
17
|
adantr |
|
19 |
12 14 15 18
|
fvmptd3 |
|
20 |
19
|
neeq1d |
|
21 |
|
nn0re |
|
22 |
21
|
leidd |
|
23 |
22
|
ad2antlr |
|
24 |
|
iffalse |
|
25 |
24
|
necon1ai |
|
26 |
25
|
breq1d |
|
27 |
23 26
|
syl5ibrcom |
|
28 |
20 27
|
sylbid |
|
29 |
28
|
ralrimiva |
|
30 |
|
plyco0 |
|
31 |
5 11 30
|
syl2anc |
|
32 |
29 31
|
mpbird |
|
33 |
1
|
ply1termlem |
|
34 |
|
elfznn0 |
|
35 |
19
|
oveq1d |
|
36 |
34 35
|
sylan2 |
|
37 |
36
|
sumeq2dv |
|
38 |
37
|
mpteq2dv |
|
39 |
33 38
|
eqtr4d |
|
40 |
4 5 11 32 39
|
coeeq |
|
41 |
4
|
adantr |
|
42 |
5
|
adantr |
|
43 |
11
|
adantr |
|
44 |
32
|
adantr |
|
45 |
39
|
adantr |
|
46 |
|
iftrue |
|
47 |
46 12
|
fvmptg |
|
48 |
47
|
ancoms |
|
49 |
48
|
neeq1d |
|
50 |
49
|
biimpar |
|
51 |
41 42 43 44 45 50
|
dgreq |
|
52 |
51
|
ex |
|
53 |
40 52
|
jca |
|