Metamath Proof Explorer


Theorem coe1termlem

Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis coe1term.1 F = z A z N
Assertion coe1termlem A N 0 coeff F = n 0 if n = N A 0 A 0 deg F = N

Proof

Step Hyp Ref Expression
1 coe1term.1 F = z A z N
2 ssid
3 1 ply1term A N 0 F Poly
4 2 3 mp3an1 A N 0 F Poly
5 simpr A N 0 N 0
6 simpl A N 0 A
7 0cn 0
8 ifcl A 0 if n = N A 0
9 6 7 8 sylancl A N 0 if n = N A 0
10 9 adantr A N 0 n 0 if n = N A 0
11 10 fmpttd A N 0 n 0 if n = N A 0 : 0
12 eqid n 0 if n = N A 0 = n 0 if n = N A 0
13 eqeq1 n = k n = N k = N
14 13 ifbid n = k if n = N A 0 = if k = N A 0
15 simpr A N 0 k 0 k 0
16 ifcl A 0 if k = N A 0
17 6 7 16 sylancl A N 0 if k = N A 0
18 17 adantr A N 0 k 0 if k = N A 0
19 12 14 15 18 fvmptd3 A N 0 k 0 n 0 if n = N A 0 k = if k = N A 0
20 19 neeq1d A N 0 k 0 n 0 if n = N A 0 k 0 if k = N A 0 0
21 nn0re N 0 N
22 21 leidd N 0 N N
23 22 ad2antlr A N 0 k 0 N N
24 iffalse ¬ k = N if k = N A 0 = 0
25 24 necon1ai if k = N A 0 0 k = N
26 25 breq1d if k = N A 0 0 k N N N
27 23 26 syl5ibrcom A N 0 k 0 if k = N A 0 0 k N
28 20 27 sylbid A N 0 k 0 n 0 if n = N A 0 k 0 k N
29 28 ralrimiva A N 0 k 0 n 0 if n = N A 0 k 0 k N
30 plyco0 N 0 n 0 if n = N A 0 : 0 n 0 if n = N A 0 N + 1 = 0 k 0 n 0 if n = N A 0 k 0 k N
31 5 11 30 syl2anc A N 0 n 0 if n = N A 0 N + 1 = 0 k 0 n 0 if n = N A 0 k 0 k N
32 29 31 mpbird A N 0 n 0 if n = N A 0 N + 1 = 0
33 1 ply1termlem A N 0 F = z k = 0 N if k = N A 0 z k
34 elfznn0 k 0 N k 0
35 19 oveq1d A N 0 k 0 n 0 if n = N A 0 k z k = if k = N A 0 z k
36 34 35 sylan2 A N 0 k 0 N n 0 if n = N A 0 k z k = if k = N A 0 z k
37 36 sumeq2dv A N 0 k = 0 N n 0 if n = N A 0 k z k = k = 0 N if k = N A 0 z k
38 37 mpteq2dv A N 0 z k = 0 N n 0 if n = N A 0 k z k = z k = 0 N if k = N A 0 z k
39 33 38 eqtr4d A N 0 F = z k = 0 N n 0 if n = N A 0 k z k
40 4 5 11 32 39 coeeq A N 0 coeff F = n 0 if n = N A 0
41 4 adantr A N 0 A 0 F Poly
42 5 adantr A N 0 A 0 N 0
43 11 adantr A N 0 A 0 n 0 if n = N A 0 : 0
44 32 adantr A N 0 A 0 n 0 if n = N A 0 N + 1 = 0
45 39 adantr A N 0 A 0 F = z k = 0 N n 0 if n = N A 0 k z k
46 iftrue n = N if n = N A 0 = A
47 46 12 fvmptg N 0 A n 0 if n = N A 0 N = A
48 47 ancoms A N 0 n 0 if n = N A 0 N = A
49 48 neeq1d A N 0 n 0 if n = N A 0 N 0 A 0
50 49 biimpar A N 0 A 0 n 0 if n = N A 0 N 0
51 41 42 43 44 45 50 dgreq A N 0 A 0 deg F = N
52 51 ex A N 0 A 0 deg F = N
53 40 52 jca A N 0 coeff F = n 0 if n = N A 0 A 0 deg F = N