Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
coe1tmfv1
Next ⟩
coe1tmfv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
coe1tmfv1
Description:
Nonzero coefficient of a polynomial term.
(Contributed by
Stefan O'Rear
, 27-Mar-2015)
Ref
Expression
Hypotheses
coe1tm.z
⊢
0
˙
=
0
R
coe1tm.k
⊢
K
=
Base
R
coe1tm.p
⊢
P
=
Poly
1
⁡
R
coe1tm.x
⊢
X
=
var
1
⁡
R
coe1tm.m
⊢
·
˙
=
⋅
P
coe1tm.n
⊢
N
=
mulGrp
P
coe1tm.e
⊢
×
˙
=
⋅
N
Assertion
coe1tmfv1
⊢
R
∈
Ring
∧
C
∈
K
∧
D
∈
ℕ
0
→
coe
1
⁡
C
·
˙
D
×
˙
X
⁡
D
=
C
Proof
Step
Hyp
Ref
Expression
1
coe1tm.z
⊢
0
˙
=
0
R
2
coe1tm.k
⊢
K
=
Base
R
3
coe1tm.p
⊢
P
=
Poly
1
⁡
R
4
coe1tm.x
⊢
X
=
var
1
⁡
R
5
coe1tm.m
⊢
·
˙
=
⋅
P
6
coe1tm.n
⊢
N
=
mulGrp
P
7
coe1tm.e
⊢
×
˙
=
⋅
N
8
1
2
3
4
5
6
7
coe1tm
⊢
R
∈
Ring
∧
C
∈
K
∧
D
∈
ℕ
0
→
coe
1
⁡
C
·
˙
D
×
˙
X
=
x
∈
ℕ
0
⟼
if
x
=
D
C
0
˙
9
8
fveq1d
⊢
R
∈
Ring
∧
C
∈
K
∧
D
∈
ℕ
0
→
coe
1
⁡
C
·
˙
D
×
˙
X
⁡
D
=
x
∈
ℕ
0
⟼
if
x
=
D
C
0
˙
⁡
D
10
eqid
⊢
x
∈
ℕ
0
⟼
if
x
=
D
C
0
˙
=
x
∈
ℕ
0
⟼
if
x
=
D
C
0
˙
11
iftrue
⊢
x
=
D
→
if
x
=
D
C
0
˙
=
C
12
simp3
⊢
R
∈
Ring
∧
C
∈
K
∧
D
∈
ℕ
0
→
D
∈
ℕ
0
13
simp2
⊢
R
∈
Ring
∧
C
∈
K
∧
D
∈
ℕ
0
→
C
∈
K
14
10
11
12
13
fvmptd3
⊢
R
∈
Ring
∧
C
∈
K
∧
D
∈
ℕ
0
→
x
∈
ℕ
0
⟼
if
x
=
D
C
0
˙
⁡
D
=
C
15
9
14
eqtrd
⊢
R
∈
Ring
∧
C
∈
K
∧
D
∈
ℕ
0
→
coe
1
⁡
C
·
˙
D
×
˙
X
⁡
D
=
C