Metamath Proof Explorer


Theorem coe1tmfv1

Description: Nonzero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses coe1tm.z 0 ˙ = 0 R
coe1tm.k K = Base R
coe1tm.p P = Poly 1 R
coe1tm.x X = var 1 R
coe1tm.m · ˙ = P
coe1tm.n N = mulGrp P
coe1tm.e × ˙ = N
Assertion coe1tmfv1 R Ring C K D 0 coe 1 C · ˙ D × ˙ X D = C

Proof

Step Hyp Ref Expression
1 coe1tm.z 0 ˙ = 0 R
2 coe1tm.k K = Base R
3 coe1tm.p P = Poly 1 R
4 coe1tm.x X = var 1 R
5 coe1tm.m · ˙ = P
6 coe1tm.n N = mulGrp P
7 coe1tm.e × ˙ = N
8 1 2 3 4 5 6 7 coe1tm R Ring C K D 0 coe 1 C · ˙ D × ˙ X = x 0 if x = D C 0 ˙
9 8 fveq1d R Ring C K D 0 coe 1 C · ˙ D × ˙ X D = x 0 if x = D C 0 ˙ D
10 eqid x 0 if x = D C 0 ˙ = x 0 if x = D C 0 ˙
11 iftrue x = D if x = D C 0 ˙ = C
12 simp3 R Ring C K D 0 D 0
13 simp2 R Ring C K D 0 C K
14 10 11 12 13 fvmptd3 R Ring C K D 0 x 0 if x = D C 0 ˙ D = C
15 9 14 eqtrd R Ring C K D 0 coe 1 C · ˙ D × ˙ X D = C