Metamath Proof Explorer


Theorem coe1tmfv2

Description: Zero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses coe1tm.z 0 ˙ = 0 R
coe1tm.k K = Base R
coe1tm.p P = Poly 1 R
coe1tm.x X = var 1 R
coe1tm.m · ˙ = P
coe1tm.n N = mulGrp P
coe1tm.e × ˙ = N
coe1tmfv2.r φ R Ring
coe1tmfv2.c φ C K
coe1tmfv2.d φ D 0
coe1tmfv2.f φ F 0
coe1tmfv2.q φ D F
Assertion coe1tmfv2 φ coe 1 C · ˙ D × ˙ X F = 0 ˙

Proof

Step Hyp Ref Expression
1 coe1tm.z 0 ˙ = 0 R
2 coe1tm.k K = Base R
3 coe1tm.p P = Poly 1 R
4 coe1tm.x X = var 1 R
5 coe1tm.m · ˙ = P
6 coe1tm.n N = mulGrp P
7 coe1tm.e × ˙ = N
8 coe1tmfv2.r φ R Ring
9 coe1tmfv2.c φ C K
10 coe1tmfv2.d φ D 0
11 coe1tmfv2.f φ F 0
12 coe1tmfv2.q φ D F
13 1 2 3 4 5 6 7 coe1tm R Ring C K D 0 coe 1 C · ˙ D × ˙ X = x 0 if x = D C 0 ˙
14 8 9 10 13 syl3anc φ coe 1 C · ˙ D × ˙ X = x 0 if x = D C 0 ˙
15 14 fveq1d φ coe 1 C · ˙ D × ˙ X F = x 0 if x = D C 0 ˙ F
16 eqid x 0 if x = D C 0 ˙ = x 0 if x = D C 0 ˙
17 eqeq1 x = F x = D F = D
18 17 ifbid x = F if x = D C 0 ˙ = if F = D C 0 ˙
19 2 1 ring0cl R Ring 0 ˙ K
20 8 19 syl φ 0 ˙ K
21 9 20 ifcld φ if F = D C 0 ˙ K
22 16 18 11 21 fvmptd3 φ x 0 if x = D C 0 ˙ F = if F = D C 0 ˙
23 12 necomd φ F D
24 23 neneqd φ ¬ F = D
25 24 iffalsed φ if F = D C 0 ˙ = 0 ˙
26 15 22 25 3eqtrd φ coe 1 C · ˙ D × ˙ X F = 0 ˙