| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1tm.z |  | 
						
							| 2 |  | coe1tm.k |  | 
						
							| 3 |  | coe1tm.p |  | 
						
							| 4 |  | coe1tm.x |  | 
						
							| 5 |  | coe1tm.m |  | 
						
							| 6 |  | coe1tm.n |  | 
						
							| 7 |  | coe1tm.e |  | 
						
							| 8 |  | coe1tmmul.b |  | 
						
							| 9 |  | coe1tmmul.t |  | 
						
							| 10 |  | coe1tmmul.u |  | 
						
							| 11 |  | coe1tmmul.a |  | 
						
							| 12 |  | coe1tmmul.r |  | 
						
							| 13 |  | coe1tmmul.c |  | 
						
							| 14 |  | coe1tmmul.d |  | 
						
							| 15 |  | coe1tmmul2fv.y |  | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | coe1tmmul2 |  | 
						
							| 17 | 16 | fveq1d |  | 
						
							| 18 | 14 15 | nn0addcld |  | 
						
							| 19 |  | breq2 |  | 
						
							| 20 |  | fvoveq1 |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 | 19 21 | ifbieq1d |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | ovex |  | 
						
							| 25 | 1 | fvexi |  | 
						
							| 26 | 24 25 | ifex |  | 
						
							| 27 | 22 23 26 | fvmpt |  | 
						
							| 28 | 18 27 | syl |  | 
						
							| 29 | 14 | nn0red |  | 
						
							| 30 |  | nn0addge1 |  | 
						
							| 31 | 29 15 30 | syl2anc |  | 
						
							| 32 | 31 | iftrued |  | 
						
							| 33 | 14 | nn0cnd |  | 
						
							| 34 | 15 | nn0cnd |  | 
						
							| 35 | 33 34 | pncan2d |  | 
						
							| 36 | 35 | fveq2d |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 28 32 37 | 3eqtrd |  | 
						
							| 39 | 17 38 | eqtrd |  |