Metamath Proof Explorer


Theorem coe1z

Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses coe1z.p P = Poly 1 R
coe1z.z 0 ˙ = 0 P
coe1z.y Y = 0 R
Assertion coe1z R Ring coe 1 0 ˙ = 0 × Y

Proof

Step Hyp Ref Expression
1 coe1z.p P = Poly 1 R
2 coe1z.z 0 ˙ = 0 P
3 coe1z.y Y = 0 R
4 fconst6g a 0 1 𝑜 × a : 1 𝑜 0
5 4 adantl R Ring a 0 1 𝑜 × a : 1 𝑜 0
6 nn0ex 0 V
7 1oex 1 𝑜 V
8 6 7 elmap 1 𝑜 × a 0 1 𝑜 1 𝑜 × a : 1 𝑜 0
9 5 8 sylibr R Ring a 0 1 𝑜 × a 0 1 𝑜
10 eqidd R Ring a 0 1 𝑜 × a = a 0 1 𝑜 × a
11 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
12 psr1baslem 0 1 𝑜 = c 0 1 𝑜 | c -1 Fin
13 11 1 2 ply1mpl0 0 ˙ = 0 1 𝑜 mPoly R
14 1on 1 𝑜 On
15 14 a1i R Ring 1 𝑜 On
16 ringgrp R Ring R Grp
17 11 12 3 13 15 16 mpl0 R Ring 0 ˙ = 0 1 𝑜 × Y
18 fconstmpt 0 1 𝑜 × Y = b 0 1 𝑜 Y
19 17 18 eqtrdi R Ring 0 ˙ = b 0 1 𝑜 Y
20 eqidd b = 1 𝑜 × a Y = Y
21 9 10 19 20 fmptco R Ring 0 ˙ a 0 1 𝑜 × a = a 0 Y
22 1 ply1ring R Ring P Ring
23 eqid Base P = Base P
24 23 2 ring0cl P Ring 0 ˙ Base P
25 eqid coe 1 0 ˙ = coe 1 0 ˙
26 eqid a 0 1 𝑜 × a = a 0 1 𝑜 × a
27 25 23 1 26 coe1fval2 0 ˙ Base P coe 1 0 ˙ = 0 ˙ a 0 1 𝑜 × a
28 22 24 27 3syl R Ring coe 1 0 ˙ = 0 ˙ a 0 1 𝑜 × a
29 fconstmpt 0 × Y = a 0 Y
30 29 a1i R Ring 0 × Y = a 0 Y
31 21 28 30 3eqtr4d R Ring coe 1 0 ˙ = 0 × Y