Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
|
2 |
|
coeadd.2 |
|
3 |
|
coeadd.3 |
|
4 |
|
coeadd.4 |
|
5 |
|
plyaddcl |
|
6 |
|
dgrcl |
|
7 |
4 6
|
eqeltrid |
|
8 |
7
|
adantl |
|
9 |
|
dgrcl |
|
10 |
3 9
|
eqeltrid |
|
11 |
10
|
adantr |
|
12 |
8 11
|
ifcld |
|
13 |
|
addcl |
|
14 |
13
|
adantl |
|
15 |
1
|
coef3 |
|
16 |
15
|
adantr |
|
17 |
2
|
coef3 |
|
18 |
17
|
adantl |
|
19 |
|
nn0ex |
|
20 |
19
|
a1i |
|
21 |
|
inidm |
|
22 |
14 16 18 20 20 21
|
off |
|
23 |
|
oveq12 |
|
24 |
|
00id |
|
25 |
23 24
|
eqtrdi |
|
26 |
16
|
ffnd |
|
27 |
18
|
ffnd |
|
28 |
|
eqidd |
|
29 |
|
eqidd |
|
30 |
26 27 20 20 21 28 29
|
ofval |
|
31 |
30
|
eqeq1d |
|
32 |
25 31
|
syl5ibr |
|
33 |
32
|
necon3ad |
|
34 |
|
neorian |
|
35 |
33 34
|
syl6ibr |
|
36 |
1 3
|
dgrub2 |
|
37 |
36
|
adantr |
|
38 |
|
plyco0 |
|
39 |
11 16 38
|
syl2anc |
|
40 |
37 39
|
mpbid |
|
41 |
40
|
r19.21bi |
|
42 |
11
|
adantr |
|
43 |
42
|
nn0red |
|
44 |
8
|
adantr |
|
45 |
44
|
nn0red |
|
46 |
|
max1 |
|
47 |
43 45 46
|
syl2anc |
|
48 |
|
nn0re |
|
49 |
48
|
adantl |
|
50 |
12
|
adantr |
|
51 |
50
|
nn0red |
|
52 |
|
letr |
|
53 |
49 43 51 52
|
syl3anc |
|
54 |
47 53
|
mpan2d |
|
55 |
41 54
|
syld |
|
56 |
2 4
|
dgrub2 |
|
57 |
56
|
adantl |
|
58 |
|
plyco0 |
|
59 |
8 18 58
|
syl2anc |
|
60 |
57 59
|
mpbid |
|
61 |
60
|
r19.21bi |
|
62 |
|
max2 |
|
63 |
43 45 62
|
syl2anc |
|
64 |
|
letr |
|
65 |
49 45 51 64
|
syl3anc |
|
66 |
63 65
|
mpan2d |
|
67 |
61 66
|
syld |
|
68 |
55 67
|
jaod |
|
69 |
35 68
|
syld |
|
70 |
69
|
ralrimiva |
|
71 |
|
plyco0 |
|
72 |
12 22 71
|
syl2anc |
|
73 |
70 72
|
mpbird |
|
74 |
|
simpl |
|
75 |
|
simpr |
|
76 |
1 3
|
coeid |
|
77 |
76
|
adantr |
|
78 |
2 4
|
coeid |
|
79 |
78
|
adantl |
|
80 |
74 75 11 8 16 18 37 57 77 79
|
plyaddlem1 |
|
81 |
5 12 22 73 80
|
coeeq |
|
82 |
|
elfznn0 |
|
83 |
|
ffvelrn |
|
84 |
22 82 83
|
syl2an |
|
85 |
5 12 84 80
|
dgrle |
|
86 |
81 85
|
jca |
|