Metamath Proof Explorer


Theorem coecj

Description: Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses plycj.1 N = deg F
plycj.2 G = * F *
coecj.3 A = coeff F
Assertion coecj F Poly S coeff G = * A

Proof

Step Hyp Ref Expression
1 plycj.1 N = deg F
2 plycj.2 G = * F *
3 coecj.3 A = coeff F
4 cjcl x x
5 4 adantl F Poly S x x
6 plyssc Poly S Poly
7 6 sseli F Poly S F Poly
8 1 2 5 7 plycj F Poly S G Poly
9 dgrcl F Poly S deg F 0
10 1 9 eqeltrid F Poly S N 0
11 cjf * :
12 3 coef3 F Poly S A : 0
13 fco * : A : 0 * A : 0
14 11 12 13 sylancr F Poly S * A : 0
15 fvco3 A : 0 k 0 * A k = A k
16 12 15 sylan F Poly S k 0 * A k = A k
17 cj0 0 = 0
18 17 eqcomi 0 = 0
19 18 a1i F Poly S k 0 0 = 0
20 16 19 eqeq12d F Poly S k 0 * A k = 0 A k = 0
21 12 ffvelrnda F Poly S k 0 A k
22 0cnd F Poly S k 0 0
23 cj11 A k 0 A k = 0 A k = 0
24 21 22 23 syl2anc F Poly S k 0 A k = 0 A k = 0
25 20 24 bitrd F Poly S k 0 * A k = 0 A k = 0
26 25 necon3bid F Poly S k 0 * A k 0 A k 0
27 3 1 dgrub2 F Poly S A N + 1 = 0
28 plyco0 N 0 A : 0 A N + 1 = 0 k 0 A k 0 k N
29 10 12 28 syl2anc F Poly S A N + 1 = 0 k 0 A k 0 k N
30 27 29 mpbid F Poly S k 0 A k 0 k N
31 30 r19.21bi F Poly S k 0 A k 0 k N
32 26 31 sylbid F Poly S k 0 * A k 0 k N
33 32 ralrimiva F Poly S k 0 * A k 0 k N
34 plyco0 N 0 * A : 0 * A N + 1 = 0 k 0 * A k 0 k N
35 10 14 34 syl2anc F Poly S * A N + 1 = 0 k 0 * A k 0 k N
36 33 35 mpbird F Poly S * A N + 1 = 0
37 1 2 3 plycjlem F Poly S G = z k = 0 N * A k z k
38 8 10 14 36 37 coeeq F Poly S coeff G = * A