Step |
Hyp |
Ref |
Expression |
1 |
|
plycj.1 |
|
2 |
|
plycj.2 |
|
3 |
|
coecj.3 |
|
4 |
|
cjcl |
|
5 |
4
|
adantl |
|
6 |
|
plyssc |
|
7 |
6
|
sseli |
|
8 |
1 2 5 7
|
plycj |
|
9 |
|
dgrcl |
|
10 |
1 9
|
eqeltrid |
|
11 |
|
cjf |
|
12 |
3
|
coef3 |
|
13 |
|
fco |
|
14 |
11 12 13
|
sylancr |
|
15 |
|
fvco3 |
|
16 |
12 15
|
sylan |
|
17 |
|
cj0 |
|
18 |
17
|
eqcomi |
|
19 |
18
|
a1i |
|
20 |
16 19
|
eqeq12d |
|
21 |
12
|
ffvelrnda |
|
22 |
|
0cnd |
|
23 |
|
cj11 |
|
24 |
21 22 23
|
syl2anc |
|
25 |
20 24
|
bitrd |
|
26 |
25
|
necon3bid |
|
27 |
3 1
|
dgrub2 |
|
28 |
|
plyco0 |
|
29 |
10 12 28
|
syl2anc |
|
30 |
27 29
|
mpbid |
|
31 |
30
|
r19.21bi |
|
32 |
26 31
|
sylbid |
|
33 |
32
|
ralrimiva |
|
34 |
|
plyco0 |
|
35 |
10 14 34
|
syl2anc |
|
36 |
33 35
|
mpbird |
|
37 |
1 2 3
|
plycjlem |
|
38 |
8 10 14 36 37
|
coeeq |
|