Step |
Hyp |
Ref |
Expression |
1 |
|
plyssc |
|
2 |
1
|
sseli |
|
3 |
|
elply2 |
|
4 |
3
|
simprbi |
|
5 |
|
rexcom |
|
6 |
4 5
|
sylib |
|
7 |
2 6
|
syl |
|
8 |
|
0cn |
|
9 |
|
snssi |
|
10 |
8 9
|
ax-mp |
|
11 |
|
ssequn2 |
|
12 |
10 11
|
mpbi |
|
13 |
12
|
oveq1i |
|
14 |
13
|
rexeqi |
|
15 |
7 14
|
sylib |
|
16 |
|
reeanv |
|
17 |
|
simp1l |
|
18 |
|
simp1rl |
|
19 |
|
simp1rr |
|
20 |
|
simp2l |
|
21 |
|
simp2r |
|
22 |
|
simp3ll |
|
23 |
|
simp3rl |
|
24 |
|
simp3lr |
|
25 |
|
oveq1 |
|
26 |
25
|
oveq2d |
|
27 |
26
|
sumeq2sdv |
|
28 |
|
fveq2 |
|
29 |
|
oveq2 |
|
30 |
28 29
|
oveq12d |
|
31 |
30
|
cbvsumv |
|
32 |
27 31
|
eqtrdi |
|
33 |
32
|
cbvmptv |
|
34 |
24 33
|
eqtrdi |
|
35 |
|
simp3rr |
|
36 |
25
|
oveq2d |
|
37 |
36
|
sumeq2sdv |
|
38 |
|
fveq2 |
|
39 |
38 29
|
oveq12d |
|
40 |
39
|
cbvsumv |
|
41 |
37 40
|
eqtrdi |
|
42 |
41
|
cbvmptv |
|
43 |
35 42
|
eqtrdi |
|
44 |
17 18 19 20 21 22 23 34 43
|
coeeulem |
|
45 |
44
|
3expia |
|
46 |
45
|
rexlimdvva |
|
47 |
16 46
|
syl5bir |
|
48 |
47
|
ralrimivva |
|
49 |
|
imaeq1 |
|
50 |
49
|
eqeq1d |
|
51 |
|
fveq1 |
|
52 |
51
|
oveq1d |
|
53 |
52
|
sumeq2sdv |
|
54 |
53
|
mpteq2dv |
|
55 |
54
|
eqeq2d |
|
56 |
50 55
|
anbi12d |
|
57 |
56
|
rexbidv |
|
58 |
|
fvoveq1 |
|
59 |
58
|
imaeq2d |
|
60 |
59
|
eqeq1d |
|
61 |
|
oveq2 |
|
62 |
61
|
sumeq1d |
|
63 |
62
|
mpteq2dv |
|
64 |
63
|
eqeq2d |
|
65 |
60 64
|
anbi12d |
|
66 |
65
|
cbvrexvw |
|
67 |
57 66
|
bitrdi |
|
68 |
67
|
reu4 |
|
69 |
15 48 68
|
sylanbrc |
|