Metamath Proof Explorer


Theorem coef2

Description: The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1 A = coeff F
Assertion coef2 F Poly S 0 S A : 0 S

Proof

Step Hyp Ref Expression
1 dgrval.1 A = coeff F
2 1 coef F Poly S A : 0 S 0
3 2 adantr F Poly S 0 S A : 0 S 0
4 simpr F Poly S 0 S 0 S
5 4 snssd F Poly S 0 S 0 S
6 ssequn2 0 S S 0 = S
7 5 6 sylib F Poly S 0 S S 0 = S
8 7 feq3d F Poly S 0 S A : 0 S 0 A : 0 S
9 3 8 mpbid F Poly S 0 S A : 0 S