Metamath Proof Explorer


Theorem coef3

Description: The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1 A = coeff F
Assertion coef3 F Poly S A : 0

Proof

Step Hyp Ref Expression
1 dgrval.1 A = coeff F
2 plyssc Poly S Poly
3 2 sseli F Poly S F Poly
4 0cn 0
5 1 coef2 F Poly 0 A : 0
6 3 4 5 sylancl F Poly S A : 0