Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
|
2 |
|
0cn |
|
3 |
|
eqid |
|
4 |
1 3
|
coeid2 |
|
5 |
2 4
|
mpan2 |
|
6 |
|
dgrcl |
|
7 |
|
nn0uz |
|
8 |
6 7
|
eleqtrdi |
|
9 |
|
fzss2 |
|
10 |
8 9
|
syl |
|
11 |
|
elfz1eq |
|
12 |
|
fveq2 |
|
13 |
|
oveq2 |
|
14 |
|
0exp0e1 |
|
15 |
13 14
|
eqtrdi |
|
16 |
12 15
|
oveq12d |
|
17 |
11 16
|
syl |
|
18 |
1
|
coef3 |
|
19 |
|
0nn0 |
|
20 |
|
ffvelrn |
|
21 |
18 19 20
|
sylancl |
|
22 |
21
|
mulid1d |
|
23 |
17 22
|
sylan9eqr |
|
24 |
21
|
adantr |
|
25 |
23 24
|
eqeltrd |
|
26 |
|
eldifn |
|
27 |
|
eldifi |
|
28 |
|
elfznn0 |
|
29 |
27 28
|
syl |
|
30 |
|
elnn0 |
|
31 |
29 30
|
sylib |
|
32 |
31
|
ord |
|
33 |
|
id |
|
34 |
|
0z |
|
35 |
|
elfz3 |
|
36 |
34 35
|
ax-mp |
|
37 |
33 36
|
eqeltrdi |
|
38 |
32 37
|
syl6 |
|
39 |
26 38
|
mt3d |
|
40 |
39
|
adantl |
|
41 |
40
|
0expd |
|
42 |
41
|
oveq2d |
|
43 |
|
ffvelrn |
|
44 |
18 29 43
|
syl2an |
|
45 |
44
|
mul01d |
|
46 |
42 45
|
eqtrd |
|
47 |
|
fzfid |
|
48 |
10 25 46 47
|
fsumss |
|
49 |
22 21
|
eqeltrd |
|
50 |
16
|
fsum1 |
|
51 |
34 49 50
|
sylancr |
|
52 |
51 22
|
eqtrd |
|
53 |
5 48 52
|
3eqtr2d |
|