Metamath Proof Explorer


Theorem coeid3

Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A = coeff F
dgrub.2 N = deg F
Assertion coeid3 F Poly S M N X F X = k = 0 M A k X k

Proof

Step Hyp Ref Expression
1 dgrub.1 A = coeff F
2 dgrub.2 N = deg F
3 1 2 coeid2 F Poly S X F X = k = 0 N A k X k
4 3 3adant2 F Poly S M N X F X = k = 0 N A k X k
5 fzss2 M N 0 N 0 M
6 5 3ad2ant2 F Poly S M N X 0 N 0 M
7 elfznn0 k 0 N k 0
8 1 coef3 F Poly S A : 0
9 8 3ad2ant1 F Poly S M N X A : 0
10 9 ffvelrnda F Poly S M N X k 0 A k
11 expcl X k 0 X k
12 11 3ad2antl3 F Poly S M N X k 0 X k
13 10 12 mulcld F Poly S M N X k 0 A k X k
14 7 13 sylan2 F Poly S M N X k 0 N A k X k
15 eldifn k 0 M 0 N ¬ k 0 N
16 15 adantl F Poly S M N X k 0 M 0 N ¬ k 0 N
17 simpl1 F Poly S M N X k 0 M 0 N F Poly S
18 eldifi k 0 M 0 N k 0 M
19 elfzuz k 0 M k 0
20 18 19 syl k 0 M 0 N k 0
21 20 adantl F Poly S M N X k 0 M 0 N k 0
22 nn0uz 0 = 0
23 21 22 eleqtrrdi F Poly S M N X k 0 M 0 N k 0
24 1 2 dgrub F Poly S k 0 A k 0 k N
25 24 3expia F Poly S k 0 A k 0 k N
26 17 23 25 syl2anc F Poly S M N X k 0 M 0 N A k 0 k N
27 simpl2 F Poly S M N X k 0 M 0 N M N
28 eluzel2 M N N
29 27 28 syl F Poly S M N X k 0 M 0 N N
30 elfz5 k 0 N k 0 N k N
31 21 29 30 syl2anc F Poly S M N X k 0 M 0 N k 0 N k N
32 26 31 sylibrd F Poly S M N X k 0 M 0 N A k 0 k 0 N
33 32 necon1bd F Poly S M N X k 0 M 0 N ¬ k 0 N A k = 0
34 16 33 mpd F Poly S M N X k 0 M 0 N A k = 0
35 34 oveq1d F Poly S M N X k 0 M 0 N A k X k = 0 X k
36 elfznn0 k 0 M k 0
37 18 36 syl k 0 M 0 N k 0
38 37 12 sylan2 F Poly S M N X k 0 M 0 N X k
39 38 mul02d F Poly S M N X k 0 M 0 N 0 X k = 0
40 35 39 eqtrd F Poly S M N X k 0 M 0 N A k X k = 0
41 fzfid F Poly S M N X 0 M Fin
42 6 14 40 41 fsumss F Poly S M N X k = 0 N A k X k = k = 0 M A k X k
43 4 42 eqtrd F Poly S M N X F X = k = 0 M A k X k