Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
|
2 |
|
dgrub.2 |
|
3 |
1 2
|
coeid2 |
|
4 |
3
|
3adant2 |
|
5 |
|
fzss2 |
|
6 |
5
|
3ad2ant2 |
|
7 |
|
elfznn0 |
|
8 |
1
|
coef3 |
|
9 |
8
|
3ad2ant1 |
|
10 |
9
|
ffvelrnda |
|
11 |
|
expcl |
|
12 |
11
|
3ad2antl3 |
|
13 |
10 12
|
mulcld |
|
14 |
7 13
|
sylan2 |
|
15 |
|
eldifn |
|
16 |
15
|
adantl |
|
17 |
|
simpl1 |
|
18 |
|
eldifi |
|
19 |
|
elfzuz |
|
20 |
18 19
|
syl |
|
21 |
20
|
adantl |
|
22 |
|
nn0uz |
|
23 |
21 22
|
eleqtrrdi |
|
24 |
1 2
|
dgrub |
|
25 |
24
|
3expia |
|
26 |
17 23 25
|
syl2anc |
|
27 |
|
simpl2 |
|
28 |
|
eluzel2 |
|
29 |
27 28
|
syl |
|
30 |
|
elfz5 |
|
31 |
21 29 30
|
syl2anc |
|
32 |
26 31
|
sylibrd |
|
33 |
32
|
necon1bd |
|
34 |
16 33
|
mpd |
|
35 |
34
|
oveq1d |
|
36 |
|
elfznn0 |
|
37 |
18 36
|
syl |
|
38 |
37 12
|
sylan2 |
|
39 |
38
|
mul02d |
|
40 |
35 39
|
eqtrd |
|
41 |
|
fzfid |
|
42 |
6 14 40 41
|
fsumss |
|
43 |
4 42
|
eqtrd |
|