Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
|
2 |
|
dgrub.2 |
|
3 |
|
coeid.3 |
|
4 |
|
coeid.4 |
|
5 |
|
coeid.5 |
|
6 |
|
coeid.6 |
|
7 |
|
coeid.7 |
|
8 |
|
plybss |
|
9 |
3 8
|
syl |
|
10 |
|
0cnd |
|
11 |
10
|
snssd |
|
12 |
9 11
|
unssd |
|
13 |
|
cnex |
|
14 |
|
ssexg |
|
15 |
12 13 14
|
sylancl |
|
16 |
|
nn0ex |
|
17 |
|
elmapg |
|
18 |
15 16 17
|
sylancl |
|
19 |
5 18
|
mpbid |
|
20 |
19 12
|
fssd |
|
21 |
3 4 20 6 7
|
coeeq |
|
22 |
1 21
|
eqtr2id |
|
23 |
22
|
adantr |
|
24 |
|
fveq1 |
|
25 |
24
|
oveq1d |
|
26 |
25
|
sumeq2sdv |
|
27 |
23 26
|
syl |
|
28 |
3
|
adantr |
|
29 |
|
dgrcl |
|
30 |
2 29
|
eqeltrid |
|
31 |
28 30
|
syl |
|
32 |
31
|
nn0zd |
|
33 |
4
|
adantr |
|
34 |
33
|
nn0zd |
|
35 |
23
|
imaeq1d |
|
36 |
6
|
adantr |
|
37 |
35 36
|
eqtr3d |
|
38 |
1 2
|
dgrlb |
|
39 |
28 33 37 38
|
syl3anc |
|
40 |
|
eluz2 |
|
41 |
32 34 39 40
|
syl3anbrc |
|
42 |
|
fzss2 |
|
43 |
41 42
|
syl |
|
44 |
|
elfznn0 |
|
45 |
|
plyssc |
|
46 |
45 3
|
sselid |
|
47 |
1
|
coef3 |
|
48 |
46 47
|
syl |
|
49 |
48
|
adantr |
|
50 |
49
|
ffvelrnda |
|
51 |
|
expcl |
|
52 |
51
|
adantll |
|
53 |
50 52
|
mulcld |
|
54 |
44 53
|
sylan2 |
|
55 |
|
eldifn |
|
56 |
55
|
adantl |
|
57 |
|
eldifi |
|
58 |
|
elfznn0 |
|
59 |
57 58
|
syl |
|
60 |
1 2
|
dgrub |
|
61 |
60
|
3expia |
|
62 |
28 59 61
|
syl2an |
|
63 |
|
elfzuz |
|
64 |
57 63
|
syl |
|
65 |
|
elfz5 |
|
66 |
64 32 65
|
syl2anr |
|
67 |
62 66
|
sylibrd |
|
68 |
67
|
necon1bd |
|
69 |
56 68
|
mpd |
|
70 |
69
|
oveq1d |
|
71 |
|
simpr |
|
72 |
71 59 51
|
syl2an |
|
73 |
72
|
mul02d |
|
74 |
70 73
|
eqtrd |
|
75 |
|
fzfid |
|
76 |
43 54 74 75
|
fsumss |
|
77 |
27 76
|
eqtr4d |
|
78 |
77
|
mpteq2dva |
|
79 |
7 78
|
eqtrd |
|