Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
coeidp
Next ⟩
dgrid
Metamath Proof Explorer
Ascii
Unicode
Theorem
coeidp
Description:
The coefficients of the identity function.
(Contributed by
Mario Carneiro
, 28-Jul-2014)
Ref
Expression
Assertion
coeidp
⊢
A
∈
ℕ
0
→
coeff
⁡
X
p
⁡
A
=
if
A
=
1
1
0
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
1nn0
⊢
1
∈
ℕ
0
3
mptresid
⊢
I
↾
ℂ
=
z
∈
ℂ
⟼
z
4
df-idp
⊢
X
p
=
I
↾
ℂ
5
exp1
⊢
z
∈
ℂ
→
z
1
=
z
6
5
oveq2d
⊢
z
∈
ℂ
→
1
⁢
z
1
=
1
⁢
z
7
mulid2
⊢
z
∈
ℂ
→
1
⁢
z
=
z
8
6
7
eqtrd
⊢
z
∈
ℂ
→
1
⁢
z
1
=
z
9
8
mpteq2ia
⊢
z
∈
ℂ
⟼
1
⁢
z
1
=
z
∈
ℂ
⟼
z
10
3
4
9
3eqtr4i
⊢
X
p
=
z
∈
ℂ
⟼
1
⁢
z
1
11
10
coe1term
⊢
1
∈
ℂ
∧
1
∈
ℕ
0
∧
A
∈
ℕ
0
→
coeff
⁡
X
p
⁡
A
=
if
A
=
1
1
0
12
1
2
11
mp3an12
⊢
A
∈
ℕ
0
→
coeff
⁡
X
p
⁡
A
=
if
A
=
1
1
0