Metamath Proof Explorer


Theorem coeidp

Description: The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion coeidp A 0 coeff X p A = if A = 1 1 0

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 1nn0 1 0
3 mptresid I = z z
4 df-idp X p = I
5 exp1 z z 1 = z
6 5 oveq2d z 1 z 1 = 1 z
7 mulid2 z 1 z = z
8 6 7 eqtrd z 1 z 1 = z
9 8 mpteq2ia z 1 z 1 = z z
10 3 4 9 3eqtr4i X p = z 1 z 1
11 10 coe1term 1 1 0 A 0 coeff X p A = if A = 1 1 0
12 1 2 11 mp3an12 A 0 coeff X p A = if A = 1 1 0