Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
coemul
Next ⟩
coe11
Metamath Proof Explorer
Ascii
Unicode
Theorem
coemul
Description:
A coefficient of a product of polynomials.
(Contributed by
Mario Carneiro
, 24-Jul-2014)
Ref
Expression
Hypotheses
coefv0.1
⊢
A
=
coeff
⁡
F
coeadd.2
⊢
B
=
coeff
⁡
G
Assertion
coemul
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
N
∈
ℕ
0
→
coeff
⁡
F
×
f
G
⁡
N
=
∑
k
=
0
N
A
⁡
k
⁢
B
⁡
N
−
k
Proof
Step
Hyp
Ref
Expression
1
coefv0.1
⊢
A
=
coeff
⁡
F
2
coeadd.2
⊢
B
=
coeff
⁡
G
3
eqid
⊢
deg
⁡
F
=
deg
⁡
F
4
eqid
⊢
deg
⁡
G
=
deg
⁡
G
5
1
2
3
4
coemullem
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
→
coeff
⁡
F
×
f
G
=
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
⁡
k
⁢
B
⁡
n
−
k
∧
deg
⁡
F
×
f
G
≤
deg
⁡
F
+
deg
⁡
G
6
5
simpld
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
→
coeff
⁡
F
×
f
G
=
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
⁡
k
⁢
B
⁡
n
−
k
7
6
fveq1d
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
→
coeff
⁡
F
×
f
G
⁡
N
=
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
⁡
k
⁢
B
⁡
n
−
k
⁡
N
8
oveq2
⊢
n
=
N
→
0
…
n
=
0
…
N
9
fvoveq1
⊢
n
=
N
→
B
⁡
n
−
k
=
B
⁡
N
−
k
10
9
oveq2d
⊢
n
=
N
→
A
⁡
k
⁢
B
⁡
n
−
k
=
A
⁡
k
⁢
B
⁡
N
−
k
11
10
adantr
⊢
n
=
N
∧
k
∈
0
…
n
→
A
⁡
k
⁢
B
⁡
n
−
k
=
A
⁡
k
⁢
B
⁡
N
−
k
12
8
11
sumeq12dv
⊢
n
=
N
→
∑
k
=
0
n
A
⁡
k
⁢
B
⁡
n
−
k
=
∑
k
=
0
N
A
⁡
k
⁢
B
⁡
N
−
k
13
eqid
⊢
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
⁡
k
⁢
B
⁡
n
−
k
=
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
⁡
k
⁢
B
⁡
n
−
k
14
sumex
⊢
∑
k
=
0
N
A
⁡
k
⁢
B
⁡
N
−
k
∈
V
15
12
13
14
fvmpt
⊢
N
∈
ℕ
0
→
n
∈
ℕ
0
⟼
∑
k
=
0
n
A
⁡
k
⁢
B
⁡
n
−
k
⁡
N
=
∑
k
=
0
N
A
⁡
k
⁢
B
⁡
N
−
k
16
7
15
sylan9eq
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
N
∈
ℕ
0
→
coeff
⁡
F
×
f
G
⁡
N
=
∑
k
=
0
N
A
⁡
k
⁢
B
⁡
N
−
k
17
16
3impa
⊢
F
∈
Poly
⁡
S
∧
G
∈
Poly
⁡
S
∧
N
∈
ℕ
0
→
coeff
⁡
F
×
f
G
⁡
N
=
∑
k
=
0
N
A
⁡
k
⁢
B
⁡
N
−
k