| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssid |  | 
						
							| 2 |  | plyconst |  | 
						
							| 3 | 1 2 | mpan |  | 
						
							| 4 |  | plyssc |  | 
						
							| 5 | 4 | sseli |  | 
						
							| 6 |  | plymulcl |  | 
						
							| 7 | 3 5 6 | syl2an |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 8 | coef3 |  | 
						
							| 10 |  | ffn |  | 
						
							| 11 | 7 9 10 | 3syl |  | 
						
							| 12 |  | fconstg |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | ffnd |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | coef3 |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 17 | ffnd |  | 
						
							| 19 |  | nn0ex |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 |  | inidm |  | 
						
							| 22 | 14 18 20 20 21 | offn |  | 
						
							| 23 | 3 | ad2antrr |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 24 | coefv0 |  | 
						
							| 26 | 23 25 | syl |  | 
						
							| 27 |  | simpll |  | 
						
							| 28 |  | 0cn |  | 
						
							| 29 |  | fvconst2g |  | 
						
							| 30 | 27 28 29 | sylancl |  | 
						
							| 31 | 26 30 | eqtr3d |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 32 | nn0cnd |  | 
						
							| 34 | 33 | subid1d |  | 
						
							| 35 | 34 | fveq2d |  | 
						
							| 36 | 31 35 | oveq12d |  | 
						
							| 37 | 5 | ad2antlr |  | 
						
							| 38 | 24 15 | coemul |  | 
						
							| 39 | 23 37 32 38 | syl3anc |  | 
						
							| 40 |  | nn0uz |  | 
						
							| 41 | 32 40 | eleqtrdi |  | 
						
							| 42 |  | fzss2 |  | 
						
							| 43 | 41 42 | syl |  | 
						
							| 44 |  | elfz1eq |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 |  | fveq2 |  | 
						
							| 47 |  | oveq2 |  | 
						
							| 48 | 47 | fveq2d |  | 
						
							| 49 | 46 48 | oveq12d |  | 
						
							| 50 | 45 49 | syl |  | 
						
							| 51 | 17 | ffvelcdmda |  | 
						
							| 52 | 27 51 | mulcld |  | 
						
							| 53 | 36 52 | eqeltrd |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 | 50 54 | eqeltrd |  | 
						
							| 56 |  | eldifn |  | 
						
							| 57 | 56 | adantl |  | 
						
							| 58 |  | eldifi |  | 
						
							| 59 |  | elfznn0 |  | 
						
							| 60 | 58 59 | syl |  | 
						
							| 61 |  | eqid |  | 
						
							| 62 | 24 61 | dgrub |  | 
						
							| 63 | 62 | 3expia |  | 
						
							| 64 | 23 60 63 | syl2an |  | 
						
							| 65 |  | 0dgr |  | 
						
							| 66 | 65 | ad3antrrr |  | 
						
							| 67 | 66 | breq2d |  | 
						
							| 68 | 60 | adantl |  | 
						
							| 69 |  | nn0le0eq0 |  | 
						
							| 70 | 68 69 | syl |  | 
						
							| 71 | 67 70 | bitrd |  | 
						
							| 72 | 64 71 | sylibd |  | 
						
							| 73 |  | id |  | 
						
							| 74 |  | 0z |  | 
						
							| 75 |  | elfz3 |  | 
						
							| 76 | 74 75 | ax-mp |  | 
						
							| 77 | 73 76 | eqeltrdi |  | 
						
							| 78 | 72 77 | syl6 |  | 
						
							| 79 | 78 | necon1bd |  | 
						
							| 80 | 57 79 | mpd |  | 
						
							| 81 | 80 | oveq1d |  | 
						
							| 82 | 17 | adantr |  | 
						
							| 83 |  | fznn0sub |  | 
						
							| 84 | 58 83 | syl |  | 
						
							| 85 |  | ffvelcdm |  | 
						
							| 86 | 82 84 85 | syl2an |  | 
						
							| 87 | 86 | mul02d |  | 
						
							| 88 | 81 87 | eqtrd |  | 
						
							| 89 |  | fzfid |  | 
						
							| 90 | 43 55 88 89 | fsumss |  | 
						
							| 91 | 49 | fsum1 |  | 
						
							| 92 | 74 53 91 | sylancr |  | 
						
							| 93 | 39 90 92 | 3eqtr2d |  | 
						
							| 94 |  | simpl |  | 
						
							| 95 |  | eqidd |  | 
						
							| 96 | 20 94 18 95 | ofc1 |  | 
						
							| 97 | 36 93 96 | 3eqtr4d |  | 
						
							| 98 | 11 22 97 | eqfnfvd |  |