Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
|
2 |
|
coeadd.2 |
|
3 |
|
coemulhi.3 |
|
4 |
|
coemulhi.4 |
|
5 |
|
dgrcl |
|
6 |
3 5
|
eqeltrid |
|
7 |
|
dgrcl |
|
8 |
4 7
|
eqeltrid |
|
9 |
|
nn0addcl |
|
10 |
6 8 9
|
syl2an |
|
11 |
1 2
|
coemul |
|
12 |
10 11
|
mpd3an3 |
|
13 |
8
|
adantl |
|
14 |
13
|
nn0ge0d |
|
15 |
6
|
adantr |
|
16 |
15
|
nn0red |
|
17 |
13
|
nn0red |
|
18 |
16 17
|
addge01d |
|
19 |
14 18
|
mpbid |
|
20 |
|
nn0uz |
|
21 |
15 20
|
eleqtrdi |
|
22 |
10
|
nn0zd |
|
23 |
|
elfz5 |
|
24 |
21 22 23
|
syl2anc |
|
25 |
19 24
|
mpbird |
|
26 |
25
|
snssd |
|
27 |
|
elsni |
|
28 |
27
|
adantl |
|
29 |
|
fveq2 |
|
30 |
|
oveq2 |
|
31 |
30
|
fveq2d |
|
32 |
29 31
|
oveq12d |
|
33 |
28 32
|
syl |
|
34 |
16
|
recnd |
|
35 |
17
|
recnd |
|
36 |
34 35
|
pncan2d |
|
37 |
36
|
fveq2d |
|
38 |
37
|
oveq2d |
|
39 |
1
|
coef3 |
|
40 |
39
|
adantr |
|
41 |
40 15
|
ffvelrnd |
|
42 |
2
|
coef3 |
|
43 |
42
|
adantl |
|
44 |
43 13
|
ffvelrnd |
|
45 |
41 44
|
mulcld |
|
46 |
38 45
|
eqeltrd |
|
47 |
46
|
adantr |
|
48 |
33 47
|
eqeltrd |
|
49 |
|
simpl |
|
50 |
|
eldifi |
|
51 |
|
elfznn0 |
|
52 |
50 51
|
syl |
|
53 |
1 3
|
dgrub |
|
54 |
53
|
3expia |
|
55 |
49 52 54
|
syl2an |
|
56 |
55
|
necon1bd |
|
57 |
56
|
imp |
|
58 |
57
|
oveq1d |
|
59 |
43
|
ad2antrr |
|
60 |
50
|
ad2antlr |
|
61 |
|
fznn0sub |
|
62 |
60 61
|
syl |
|
63 |
59 62
|
ffvelrnd |
|
64 |
63
|
mul02d |
|
65 |
58 64
|
eqtrd |
|
66 |
16
|
adantr |
|
67 |
50
|
adantl |
|
68 |
67 51
|
syl |
|
69 |
68
|
nn0red |
|
70 |
17
|
adantr |
|
71 |
66 69 70
|
leadd1d |
|
72 |
10
|
adantr |
|
73 |
72
|
nn0red |
|
74 |
73 69 70
|
lesubadd2d |
|
75 |
71 74
|
bitr4d |
|
76 |
75
|
notbid |
|
77 |
76
|
biimpa |
|
78 |
|
simpr |
|
79 |
50 61
|
syl |
|
80 |
2 4
|
dgrub |
|
81 |
80
|
3expia |
|
82 |
78 79 81
|
syl2an |
|
83 |
82
|
necon1bd |
|
84 |
83
|
imp |
|
85 |
77 84
|
syldan |
|
86 |
85
|
oveq2d |
|
87 |
40
|
ad2antrr |
|
88 |
52
|
ad2antlr |
|
89 |
87 88
|
ffvelrnd |
|
90 |
89
|
mul01d |
|
91 |
86 90
|
eqtrd |
|
92 |
|
eldifsni |
|
93 |
92
|
adantl |
|
94 |
69 66
|
letri3d |
|
95 |
94
|
necon3abid |
|
96 |
93 95
|
mpbid |
|
97 |
|
ianor |
|
98 |
96 97
|
sylib |
|
99 |
65 91 98
|
mpjaodan |
|
100 |
|
fzfid |
|
101 |
26 48 99 100
|
fsumss |
|
102 |
32
|
sumsn |
|
103 |
15 46 102
|
syl2anc |
|
104 |
103 38
|
eqtrd |
|
105 |
12 101 104
|
3eqtr2d |
|