Metamath Proof Explorer


Theorem coemulhi

Description: The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses coefv0.1 A = coeff F
coeadd.2 B = coeff G
coemulhi.3 M = deg F
coemulhi.4 N = deg G
Assertion coemulhi F Poly S G Poly S coeff F × f G M + N = A M B N

Proof

Step Hyp Ref Expression
1 coefv0.1 A = coeff F
2 coeadd.2 B = coeff G
3 coemulhi.3 M = deg F
4 coemulhi.4 N = deg G
5 dgrcl F Poly S deg F 0
6 3 5 eqeltrid F Poly S M 0
7 dgrcl G Poly S deg G 0
8 4 7 eqeltrid G Poly S N 0
9 nn0addcl M 0 N 0 M + N 0
10 6 8 9 syl2an F Poly S G Poly S M + N 0
11 1 2 coemul F Poly S G Poly S M + N 0 coeff F × f G M + N = k = 0 M + N A k B M + N - k
12 10 11 mpd3an3 F Poly S G Poly S coeff F × f G M + N = k = 0 M + N A k B M + N - k
13 8 adantl F Poly S G Poly S N 0
14 13 nn0ge0d F Poly S G Poly S 0 N
15 6 adantr F Poly S G Poly S M 0
16 15 nn0red F Poly S G Poly S M
17 13 nn0red F Poly S G Poly S N
18 16 17 addge01d F Poly S G Poly S 0 N M M + N
19 14 18 mpbid F Poly S G Poly S M M + N
20 nn0uz 0 = 0
21 15 20 eleqtrdi F Poly S G Poly S M 0
22 10 nn0zd F Poly S G Poly S M + N
23 elfz5 M 0 M + N M 0 M + N M M + N
24 21 22 23 syl2anc F Poly S G Poly S M 0 M + N M M + N
25 19 24 mpbird F Poly S G Poly S M 0 M + N
26 25 snssd F Poly S G Poly S M 0 M + N
27 elsni k M k = M
28 27 adantl F Poly S G Poly S k M k = M
29 fveq2 k = M A k = A M
30 oveq2 k = M M + N - k = M + N - M
31 30 fveq2d k = M B M + N - k = B M + N - M
32 29 31 oveq12d k = M A k B M + N - k = A M B M + N - M
33 28 32 syl F Poly S G Poly S k M A k B M + N - k = A M B M + N - M
34 16 recnd F Poly S G Poly S M
35 17 recnd F Poly S G Poly S N
36 34 35 pncan2d F Poly S G Poly S M + N - M = N
37 36 fveq2d F Poly S G Poly S B M + N - M = B N
38 37 oveq2d F Poly S G Poly S A M B M + N - M = A M B N
39 1 coef3 F Poly S A : 0
40 39 adantr F Poly S G Poly S A : 0
41 40 15 ffvelrnd F Poly S G Poly S A M
42 2 coef3 G Poly S B : 0
43 42 adantl F Poly S G Poly S B : 0
44 43 13 ffvelrnd F Poly S G Poly S B N
45 41 44 mulcld F Poly S G Poly S A M B N
46 38 45 eqeltrd F Poly S G Poly S A M B M + N - M
47 46 adantr F Poly S G Poly S k M A M B M + N - M
48 33 47 eqeltrd F Poly S G Poly S k M A k B M + N - k
49 simpl F Poly S G Poly S F Poly S
50 eldifi k 0 M + N M k 0 M + N
51 elfznn0 k 0 M + N k 0
52 50 51 syl k 0 M + N M k 0
53 1 3 dgrub F Poly S k 0 A k 0 k M
54 53 3expia F Poly S k 0 A k 0 k M
55 49 52 54 syl2an F Poly S G Poly S k 0 M + N M A k 0 k M
56 55 necon1bd F Poly S G Poly S k 0 M + N M ¬ k M A k = 0
57 56 imp F Poly S G Poly S k 0 M + N M ¬ k M A k = 0
58 57 oveq1d F Poly S G Poly S k 0 M + N M ¬ k M A k B M + N - k = 0 B M + N - k
59 43 ad2antrr F Poly S G Poly S k 0 M + N M ¬ k M B : 0
60 50 ad2antlr F Poly S G Poly S k 0 M + N M ¬ k M k 0 M + N
61 fznn0sub k 0 M + N M + N - k 0
62 60 61 syl F Poly S G Poly S k 0 M + N M ¬ k M M + N - k 0
63 59 62 ffvelrnd F Poly S G Poly S k 0 M + N M ¬ k M B M + N - k
64 63 mul02d F Poly S G Poly S k 0 M + N M ¬ k M 0 B M + N - k = 0
65 58 64 eqtrd F Poly S G Poly S k 0 M + N M ¬ k M A k B M + N - k = 0
66 16 adantr F Poly S G Poly S k 0 M + N M M
67 50 adantl F Poly S G Poly S k 0 M + N M k 0 M + N
68 67 51 syl F Poly S G Poly S k 0 M + N M k 0
69 68 nn0red F Poly S G Poly S k 0 M + N M k
70 17 adantr F Poly S G Poly S k 0 M + N M N
71 66 69 70 leadd1d F Poly S G Poly S k 0 M + N M M k M + N k + N
72 10 adantr F Poly S G Poly S k 0 M + N M M + N 0
73 72 nn0red F Poly S G Poly S k 0 M + N M M + N
74 73 69 70 lesubadd2d F Poly S G Poly S k 0 M + N M M + N - k N M + N k + N
75 71 74 bitr4d F Poly S G Poly S k 0 M + N M M k M + N - k N
76 75 notbid F Poly S G Poly S k 0 M + N M ¬ M k ¬ M + N - k N
77 76 biimpa F Poly S G Poly S k 0 M + N M ¬ M k ¬ M + N - k N
78 simpr F Poly S G Poly S G Poly S
79 50 61 syl k 0 M + N M M + N - k 0
80 2 4 dgrub G Poly S M + N - k 0 B M + N - k 0 M + N - k N
81 80 3expia G Poly S M + N - k 0 B M + N - k 0 M + N - k N
82 78 79 81 syl2an F Poly S G Poly S k 0 M + N M B M + N - k 0 M + N - k N
83 82 necon1bd F Poly S G Poly S k 0 M + N M ¬ M + N - k N B M + N - k = 0
84 83 imp F Poly S G Poly S k 0 M + N M ¬ M + N - k N B M + N - k = 0
85 77 84 syldan F Poly S G Poly S k 0 M + N M ¬ M k B M + N - k = 0
86 85 oveq2d F Poly S G Poly S k 0 M + N M ¬ M k A k B M + N - k = A k 0
87 40 ad2antrr F Poly S G Poly S k 0 M + N M ¬ M k A : 0
88 52 ad2antlr F Poly S G Poly S k 0 M + N M ¬ M k k 0
89 87 88 ffvelrnd F Poly S G Poly S k 0 M + N M ¬ M k A k
90 89 mul01d F Poly S G Poly S k 0 M + N M ¬ M k A k 0 = 0
91 86 90 eqtrd F Poly S G Poly S k 0 M + N M ¬ M k A k B M + N - k = 0
92 eldifsni k 0 M + N M k M
93 92 adantl F Poly S G Poly S k 0 M + N M k M
94 69 66 letri3d F Poly S G Poly S k 0 M + N M k = M k M M k
95 94 necon3abid F Poly S G Poly S k 0 M + N M k M ¬ k M M k
96 93 95 mpbid F Poly S G Poly S k 0 M + N M ¬ k M M k
97 ianor ¬ k M M k ¬ k M ¬ M k
98 96 97 sylib F Poly S G Poly S k 0 M + N M ¬ k M ¬ M k
99 65 91 98 mpjaodan F Poly S G Poly S k 0 M + N M A k B M + N - k = 0
100 fzfid F Poly S G Poly S 0 M + N Fin
101 26 48 99 100 fsumss F Poly S G Poly S k M A k B M + N - k = k = 0 M + N A k B M + N - k
102 32 sumsn M 0 A M B M + N - M k M A k B M + N - k = A M B M + N - M
103 15 46 102 syl2anc F Poly S G Poly S k M A k B M + N - k = A M B M + N - M
104 103 38 eqtrd F Poly S G Poly S k M A k B M + N - k = A M B N
105 12 101 104 3eqtr2d F Poly S G Poly S coeff F × f G M + N = A M B N