Metamath Proof Explorer


Theorem coemullem

Description: Lemma for coemul and dgrmul . (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses coefv0.1 A = coeff F
coeadd.2 B = coeff G
coeadd.3 M = deg F
coeadd.4 N = deg G
Assertion coemullem F Poly S G Poly S coeff F × f G = n 0 k = 0 n A k B n k deg F × f G M + N

Proof

Step Hyp Ref Expression
1 coefv0.1 A = coeff F
2 coeadd.2 B = coeff G
3 coeadd.3 M = deg F
4 coeadd.4 N = deg G
5 plymulcl F Poly S G Poly S F × f G Poly
6 dgrcl F Poly S deg F 0
7 3 6 eqeltrid F Poly S M 0
8 dgrcl G Poly S deg G 0
9 4 8 eqeltrid G Poly S N 0
10 nn0addcl M 0 N 0 M + N 0
11 7 9 10 syl2an F Poly S G Poly S M + N 0
12 fzfid F Poly S G Poly S n 0 0 n Fin
13 1 coef3 F Poly S A : 0
14 13 adantr F Poly S G Poly S A : 0
15 14 adantr F Poly S G Poly S n 0 A : 0
16 elfznn0 k 0 n k 0
17 ffvelrn A : 0 k 0 A k
18 15 16 17 syl2an F Poly S G Poly S n 0 k 0 n A k
19 2 coef3 G Poly S B : 0
20 19 adantl F Poly S G Poly S B : 0
21 20 ad2antrr F Poly S G Poly S n 0 k 0 n B : 0
22 fznn0sub k 0 n n k 0
23 22 adantl F Poly S G Poly S n 0 k 0 n n k 0
24 21 23 ffvelrnd F Poly S G Poly S n 0 k 0 n B n k
25 18 24 mulcld F Poly S G Poly S n 0 k 0 n A k B n k
26 12 25 fsumcl F Poly S G Poly S n 0 k = 0 n A k B n k
27 26 fmpttd F Poly S G Poly S n 0 k = 0 n A k B n k : 0
28 oveq2 n = j 0 n = 0 j
29 fvoveq1 n = j B n k = B j k
30 29 oveq2d n = j A k B n k = A k B j k
31 30 adantr n = j k 0 n A k B n k = A k B j k
32 28 31 sumeq12dv n = j k = 0 n A k B n k = k = 0 j A k B j k
33 eqid n 0 k = 0 n A k B n k = n 0 k = 0 n A k B n k
34 sumex k = 0 j A k B j k V
35 32 33 34 fvmpt j 0 n 0 k = 0 n A k B n k j = k = 0 j A k B j k
36 35 ad2antrl F Poly S G Poly S j 0 ¬ j M + N n 0 k = 0 n A k B n k j = k = 0 j A k B j k
37 simp2r F Poly S G Poly S j 0 ¬ j M + N k 0 j k M ¬ j M + N
38 simp2l F Poly S G Poly S j 0 ¬ j M + N k 0 j k M j 0
39 38 nn0red F Poly S G Poly S j 0 ¬ j M + N k 0 j k M j
40 simp3l F Poly S G Poly S j 0 ¬ j M + N k 0 j k M k 0 j
41 elfznn0 k 0 j k 0
42 40 41 syl F Poly S G Poly S j 0 ¬ j M + N k 0 j k M k 0
43 42 nn0red F Poly S G Poly S j 0 ¬ j M + N k 0 j k M k
44 9 adantl F Poly S G Poly S N 0
45 44 3ad2ant1 F Poly S G Poly S j 0 ¬ j M + N k 0 j k M N 0
46 45 nn0red F Poly S G Poly S j 0 ¬ j M + N k 0 j k M N
47 39 43 46 lesubadd2d F Poly S G Poly S j 0 ¬ j M + N k 0 j k M j k N j k + N
48 7 adantr F Poly S G Poly S M 0
49 48 3ad2ant1 F Poly S G Poly S j 0 ¬ j M + N k 0 j k M M 0
50 49 nn0red F Poly S G Poly S j 0 ¬ j M + N k 0 j k M M
51 simp3r F Poly S G Poly S j 0 ¬ j M + N k 0 j k M k M
52 43 50 46 51 leadd1dd F Poly S G Poly S j 0 ¬ j M + N k 0 j k M k + N M + N
53 43 46 readdcld F Poly S G Poly S j 0 ¬ j M + N k 0 j k M k + N
54 50 46 readdcld F Poly S G Poly S j 0 ¬ j M + N k 0 j k M M + N
55 letr j k + N M + N j k + N k + N M + N j M + N
56 39 53 54 55 syl3anc F Poly S G Poly S j 0 ¬ j M + N k 0 j k M j k + N k + N M + N j M + N
57 52 56 mpan2d F Poly S G Poly S j 0 ¬ j M + N k 0 j k M j k + N j M + N
58 47 57 sylbid F Poly S G Poly S j 0 ¬ j M + N k 0 j k M j k N j M + N
59 37 58 mtod F Poly S G Poly S j 0 ¬ j M + N k 0 j k M ¬ j k N
60 simpr F Poly S G Poly S G Poly S
61 60 3ad2ant1 F Poly S G Poly S j 0 ¬ j M + N k 0 j k M G Poly S
62 fznn0sub k 0 j j k 0
63 40 62 syl F Poly S G Poly S j 0 ¬ j M + N k 0 j k M j k 0
64 2 4 dgrub G Poly S j k 0 B j k 0 j k N
65 64 3expia G Poly S j k 0 B j k 0 j k N
66 61 63 65 syl2anc F Poly S G Poly S j 0 ¬ j M + N k 0 j k M B j k 0 j k N
67 66 necon1bd F Poly S G Poly S j 0 ¬ j M + N k 0 j k M ¬ j k N B j k = 0
68 59 67 mpd F Poly S G Poly S j 0 ¬ j M + N k 0 j k M B j k = 0
69 68 oveq2d F Poly S G Poly S j 0 ¬ j M + N k 0 j k M A k B j k = A k 0
70 14 3ad2ant1 F Poly S G Poly S j 0 ¬ j M + N k 0 j k M A : 0
71 70 42 ffvelrnd F Poly S G Poly S j 0 ¬ j M + N k 0 j k M A k
72 71 mul01d F Poly S G Poly S j 0 ¬ j M + N k 0 j k M A k 0 = 0
73 69 72 eqtrd F Poly S G Poly S j 0 ¬ j M + N k 0 j k M A k B j k = 0
74 73 3expia F Poly S G Poly S j 0 ¬ j M + N k 0 j k M A k B j k = 0
75 74 impl F Poly S G Poly S j 0 ¬ j M + N k 0 j k M A k B j k = 0
76 simpl F Poly S G Poly S F Poly S
77 76 adantr F Poly S G Poly S j 0 ¬ j M + N F Poly S
78 1 3 dgrub F Poly S k 0 A k 0 k M
79 78 3expia F Poly S k 0 A k 0 k M
80 77 41 79 syl2an F Poly S G Poly S j 0 ¬ j M + N k 0 j A k 0 k M
81 80 necon1bd F Poly S G Poly S j 0 ¬ j M + N k 0 j ¬ k M A k = 0
82 81 imp F Poly S G Poly S j 0 ¬ j M + N k 0 j ¬ k M A k = 0
83 82 oveq1d F Poly S G Poly S j 0 ¬ j M + N k 0 j ¬ k M A k B j k = 0 B j k
84 20 ad3antrrr F Poly S G Poly S j 0 ¬ j M + N k 0 j ¬ k M B : 0
85 62 ad2antlr F Poly S G Poly S j 0 ¬ j M + N k 0 j ¬ k M j k 0
86 84 85 ffvelrnd F Poly S G Poly S j 0 ¬ j M + N k 0 j ¬ k M B j k
87 86 mul02d F Poly S G Poly S j 0 ¬ j M + N k 0 j ¬ k M 0 B j k = 0
88 83 87 eqtrd F Poly S G Poly S j 0 ¬ j M + N k 0 j ¬ k M A k B j k = 0
89 75 88 pm2.61dan F Poly S G Poly S j 0 ¬ j M + N k 0 j A k B j k = 0
90 89 sumeq2dv F Poly S G Poly S j 0 ¬ j M + N k = 0 j A k B j k = k = 0 j 0
91 fzfi 0 j Fin
92 91 olci 0 j 0 0 j Fin
93 sumz 0 j 0 0 j Fin k = 0 j 0 = 0
94 92 93 ax-mp k = 0 j 0 = 0
95 90 94 eqtrdi F Poly S G Poly S j 0 ¬ j M + N k = 0 j A k B j k = 0
96 36 95 eqtrd F Poly S G Poly S j 0 ¬ j M + N n 0 k = 0 n A k B n k j = 0
97 96 expr F Poly S G Poly S j 0 ¬ j M + N n 0 k = 0 n A k B n k j = 0
98 97 necon1ad F Poly S G Poly S j 0 n 0 k = 0 n A k B n k j 0 j M + N
99 98 ralrimiva F Poly S G Poly S j 0 n 0 k = 0 n A k B n k j 0 j M + N
100 plyco0 M + N 0 n 0 k = 0 n A k B n k : 0 n 0 k = 0 n A k B n k M + N + 1 = 0 j 0 n 0 k = 0 n A k B n k j 0 j M + N
101 11 27 100 syl2anc F Poly S G Poly S n 0 k = 0 n A k B n k M + N + 1 = 0 j 0 n 0 k = 0 n A k B n k j 0 j M + N
102 99 101 mpbird F Poly S G Poly S n 0 k = 0 n A k B n k M + N + 1 = 0
103 1 3 dgrub2 F Poly S A M + 1 = 0
104 103 adantr F Poly S G Poly S A M + 1 = 0
105 2 4 dgrub2 G Poly S B N + 1 = 0
106 105 adantl F Poly S G Poly S B N + 1 = 0
107 1 3 coeid F Poly S F = z k = 0 M A k z k
108 107 adantr F Poly S G Poly S F = z k = 0 M A k z k
109 2 4 coeid G Poly S G = z k = 0 N B k z k
110 109 adantl F Poly S G Poly S G = z k = 0 N B k z k
111 76 60 48 44 14 20 104 106 108 110 plymullem1 F Poly S G Poly S F × f G = z j = 0 M + N k = 0 j A k B j k z j
112 elfznn0 j 0 M + N j 0
113 112 35 syl j 0 M + N n 0 k = 0 n A k B n k j = k = 0 j A k B j k
114 113 oveq1d j 0 M + N n 0 k = 0 n A k B n k j z j = k = 0 j A k B j k z j
115 114 sumeq2i j = 0 M + N n 0 k = 0 n A k B n k j z j = j = 0 M + N k = 0 j A k B j k z j
116 115 mpteq2i z j = 0 M + N n 0 k = 0 n A k B n k j z j = z j = 0 M + N k = 0 j A k B j k z j
117 111 116 eqtr4di F Poly S G Poly S F × f G = z j = 0 M + N n 0 k = 0 n A k B n k j z j
118 5 11 27 102 117 coeeq F Poly S G Poly S coeff F × f G = n 0 k = 0 n A k B n k
119 ffvelrn n 0 k = 0 n A k B n k : 0 j 0 n 0 k = 0 n A k B n k j
120 27 112 119 syl2an F Poly S G Poly S j 0 M + N n 0 k = 0 n A k B n k j
121 5 11 120 117 dgrle F Poly S G Poly S deg F × f G M + N
122 118 121 jca F Poly S G Poly S coeff F × f G = n 0 k = 0 n A k B n k deg F × f G M + N