Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
|
2 |
|
coeadd.2 |
|
3 |
|
coeadd.3 |
|
4 |
|
coeadd.4 |
|
5 |
|
plymulcl |
|
6 |
|
dgrcl |
|
7 |
3 6
|
eqeltrid |
|
8 |
|
dgrcl |
|
9 |
4 8
|
eqeltrid |
|
10 |
|
nn0addcl |
|
11 |
7 9 10
|
syl2an |
|
12 |
|
fzfid |
|
13 |
1
|
coef3 |
|
14 |
13
|
adantr |
|
15 |
14
|
adantr |
|
16 |
|
elfznn0 |
|
17 |
|
ffvelrn |
|
18 |
15 16 17
|
syl2an |
|
19 |
2
|
coef3 |
|
20 |
19
|
adantl |
|
21 |
20
|
ad2antrr |
|
22 |
|
fznn0sub |
|
23 |
22
|
adantl |
|
24 |
21 23
|
ffvelrnd |
|
25 |
18 24
|
mulcld |
|
26 |
12 25
|
fsumcl |
|
27 |
26
|
fmpttd |
|
28 |
|
oveq2 |
|
29 |
|
fvoveq1 |
|
30 |
29
|
oveq2d |
|
31 |
30
|
adantr |
|
32 |
28 31
|
sumeq12dv |
|
33 |
|
eqid |
|
34 |
|
sumex |
|
35 |
32 33 34
|
fvmpt |
|
36 |
35
|
ad2antrl |
|
37 |
|
simp2r |
|
38 |
|
simp2l |
|
39 |
38
|
nn0red |
|
40 |
|
simp3l |
|
41 |
|
elfznn0 |
|
42 |
40 41
|
syl |
|
43 |
42
|
nn0red |
|
44 |
9
|
adantl |
|
45 |
44
|
3ad2ant1 |
|
46 |
45
|
nn0red |
|
47 |
39 43 46
|
lesubadd2d |
|
48 |
7
|
adantr |
|
49 |
48
|
3ad2ant1 |
|
50 |
49
|
nn0red |
|
51 |
|
simp3r |
|
52 |
43 50 46 51
|
leadd1dd |
|
53 |
43 46
|
readdcld |
|
54 |
50 46
|
readdcld |
|
55 |
|
letr |
|
56 |
39 53 54 55
|
syl3anc |
|
57 |
52 56
|
mpan2d |
|
58 |
47 57
|
sylbid |
|
59 |
37 58
|
mtod |
|
60 |
|
simpr |
|
61 |
60
|
3ad2ant1 |
|
62 |
|
fznn0sub |
|
63 |
40 62
|
syl |
|
64 |
2 4
|
dgrub |
|
65 |
64
|
3expia |
|
66 |
61 63 65
|
syl2anc |
|
67 |
66
|
necon1bd |
|
68 |
59 67
|
mpd |
|
69 |
68
|
oveq2d |
|
70 |
14
|
3ad2ant1 |
|
71 |
70 42
|
ffvelrnd |
|
72 |
71
|
mul01d |
|
73 |
69 72
|
eqtrd |
|
74 |
73
|
3expia |
|
75 |
74
|
impl |
|
76 |
|
simpl |
|
77 |
76
|
adantr |
|
78 |
1 3
|
dgrub |
|
79 |
78
|
3expia |
|
80 |
77 41 79
|
syl2an |
|
81 |
80
|
necon1bd |
|
82 |
81
|
imp |
|
83 |
82
|
oveq1d |
|
84 |
20
|
ad3antrrr |
|
85 |
62
|
ad2antlr |
|
86 |
84 85
|
ffvelrnd |
|
87 |
86
|
mul02d |
|
88 |
83 87
|
eqtrd |
|
89 |
75 88
|
pm2.61dan |
|
90 |
89
|
sumeq2dv |
|
91 |
|
fzfi |
|
92 |
91
|
olci |
|
93 |
|
sumz |
|
94 |
92 93
|
ax-mp |
|
95 |
90 94
|
eqtrdi |
|
96 |
36 95
|
eqtrd |
|
97 |
96
|
expr |
|
98 |
97
|
necon1ad |
|
99 |
98
|
ralrimiva |
|
100 |
|
plyco0 |
|
101 |
11 27 100
|
syl2anc |
|
102 |
99 101
|
mpbird |
|
103 |
1 3
|
dgrub2 |
|
104 |
103
|
adantr |
|
105 |
2 4
|
dgrub2 |
|
106 |
105
|
adantl |
|
107 |
1 3
|
coeid |
|
108 |
107
|
adantr |
|
109 |
2 4
|
coeid |
|
110 |
109
|
adantl |
|
111 |
76 60 48 44 14 20 104 106 108 110
|
plymullem1 |
|
112 |
|
elfznn0 |
|
113 |
112 35
|
syl |
|
114 |
113
|
oveq1d |
|
115 |
114
|
sumeq2i |
|
116 |
115
|
mpteq2i |
|
117 |
111 116
|
eqtr4di |
|
118 |
5 11 27 102 117
|
coeeq |
|
119 |
|
ffvelrn |
|
120 |
27 112 119
|
syl2an |
|
121 |
5 11 120 117
|
dgrle |
|
122 |
118 121
|
jca |
|