Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Relations and functions (cont.)
coex
Next ⟩
funcnvuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
coex
Description:
The composition of two sets is a set.
(Contributed by
NM
, 15-Dec-2003)
Ref
Expression
Hypotheses
coex.1
⊢
A
∈
V
coex.2
⊢
B
∈
V
Assertion
coex
⊢
A
∘
B
∈
V
Proof
Step
Hyp
Ref
Expression
1
coex.1
⊢
A
∈
V
2
coex.2
⊢
B
∈
V
3
coexg
⊢
A
∈
V
∧
B
∈
V
→
A
∘
B
∈
V
4
1
2
3
mp2an
⊢
A
∘
B
∈
V