Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Relations and functions (cont.)
coexg
Next ⟩
coex
Metamath Proof Explorer
Ascii
Unicode
Theorem
coexg
Description:
The composition of two sets is a set.
(Contributed by
NM
, 19-Mar-1998)
Ref
Expression
Assertion
coexg
⊢
A
∈
V
∧
B
∈
W
→
A
∘
B
∈
V
Proof
Step
Hyp
Ref
Expression
1
cossxp
⊢
A
∘
B
⊆
dom
⁡
B
×
ran
⁡
A
2
dmexg
⊢
B
∈
W
→
dom
⁡
B
∈
V
3
rnexg
⊢
A
∈
V
→
ran
⁡
A
∈
V
4
xpexg
⊢
dom
⁡
B
∈
V
∧
ran
⁡
A
∈
V
→
dom
⁡
B
×
ran
⁡
A
∈
V
5
2
3
4
syl2anr
⊢
A
∈
V
∧
B
∈
W
→
dom
⁡
B
×
ran
⁡
A
∈
V
6
ssexg
⊢
A
∘
B
⊆
dom
⁡
B
×
ran
⁡
A
∧
dom
⁡
B
×
ran
⁡
A
∈
V
→
A
∘
B
∈
V
7
1
5
6
sylancr
⊢
A
∈
V
∧
B
∈
W
→
A
∘
B
∈
V