Metamath Proof Explorer


Theorem coexg

Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998)

Ref Expression
Assertion coexg A V B W A B V

Proof

Step Hyp Ref Expression
1 cossxp A B dom B × ran A
2 dmexg B W dom B V
3 rnexg A V ran A V
4 xpexg dom B V ran A V dom B × ran A V
5 2 3 4 syl2anr A V B W dom B × ran A V
6 ssexg A B dom B × ran A dom B × ran A V A B V
7 1 5 6 sylancr A V B W A B V