Metamath Proof Explorer


Theorem cofcut2d

Description: If A and C are mutually cofinal and B and D are mutually coinitial, then the cut of A and B is equal to the cut of C and D . Theorem 2.7 of Gonshor p. 10. (Contributed by Scott Fenton, 23-Jan-2025)

Ref Expression
Hypotheses cofcut2d.1 φ A s B
cofcut2d.2 φ C 𝒫 No
cofcut2d.3 φ D 𝒫 No
cofcut2d.4 φ x A y C x s y
cofcut2d.5 φ z B w D w s z
cofcut2d.6 φ t C u A t s u
cofcut2d.7 φ r D s B s s r
Assertion cofcut2d φ A | s B = C | s D

Proof

Step Hyp Ref Expression
1 cofcut2d.1 φ A s B
2 cofcut2d.2 φ C 𝒫 No
3 cofcut2d.3 φ D 𝒫 No
4 cofcut2d.4 φ x A y C x s y
5 cofcut2d.5 φ z B w D w s z
6 cofcut2d.6 φ t C u A t s u
7 cofcut2d.7 φ r D s B s s r
8 cofcut2 A s B C 𝒫 No D 𝒫 No x A y C x s y z B w D w s z t C u A t s u r D s B s s r A | s B = C | s D
9 1 2 3 4 5 6 7 8 syl322anc φ A | s B = C | s D