Metamath Proof Explorer


Theorem coffth

Description: The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses coffth.f φ F C Full D C Faith D
coffth.g φ G D Full E D Faith E
Assertion coffth φ G func F C Full E C Faith E

Proof

Step Hyp Ref Expression
1 coffth.f φ F C Full D C Faith D
2 coffth.g φ G D Full E D Faith E
3 1 elin1d φ F C Full D
4 2 elin1d φ G D Full E
5 3 4 cofull φ G func F C Full E
6 1 elin2d φ F C Faith D
7 2 elin2d φ G D Faith E
8 6 7 cofth φ G func F C Faith E
9 5 8 elind φ G func F C Full E C Faith E