Metamath Proof Explorer


Theorem cofipsgn

Description: Composition of any class Y and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses cofipsgn.p P = Base SymGrp N
cofipsgn.s S = pmSgn N
Assertion cofipsgn N Fin Q P Y S Q = Y S Q

Proof

Step Hyp Ref Expression
1 cofipsgn.p P = Base SymGrp N
2 cofipsgn.s S = pmSgn N
3 eqid SymGrp N = SymGrp N
4 eqid p P | dom p I Fin = p P | dom p I Fin
5 3 1 4 2 psgnfn S Fn p P | dom p I Fin
6 difeq1 p = Q p I = Q I
7 6 dmeqd p = Q dom p I = dom Q I
8 7 eleq1d p = Q dom p I Fin dom Q I Fin
9 simpr N Fin Q P Q P
10 3 1 sygbasnfpfi N Fin Q P dom Q I Fin
11 8 9 10 elrabd N Fin Q P Q p P | dom p I Fin
12 fvco2 S Fn p P | dom p I Fin Q p P | dom p I Fin Y S Q = Y S Q
13 5 11 12 sylancr N Fin Q P Y S Q = Y S Q