Metamath Proof Explorer


Theorem coflton

Description: Cofinality theorem for ordinals. If A is cofinal with B and B precedes C , then A precedes C . Compare cofsslt for surreals. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses coflton.1 φ A On
coflton.2 φ B On
coflton.3 φ C On
coflton.4 φ x A y B x y
coflton.5 φ z B w C z w
Assertion coflton φ a A c C a c

Proof

Step Hyp Ref Expression
1 coflton.1 φ A On
2 coflton.2 φ B On
3 coflton.3 φ C On
4 coflton.4 φ x A y B x y
5 coflton.5 φ z B w C z w
6 sseq1 x = a x y a y
7 6 rexbidv x = a y B x y y B a y
8 4 adantr φ a A x A y B x y
9 simpr φ a A a A
10 7 8 9 rspcdva φ a A y B a y
11 10 adantrr φ a A c C y B a y
12 sseq2 y = b a y a b
13 12 cbvrexvw y B a y b B a b
14 11 13 sylib φ a A c C b B a b
15 simpr φ a A c C b B b B
16 simplrr φ a A c C b B c C
17 5 ad2antrr φ a A c C b B z B w C z w
18 elequ1 z = b z w b w
19 elequ2 w = c b w b c
20 18 19 rspc2va b B c C z B w C z w b c
21 15 16 17 20 syl21anc φ a A c C b B b c
22 1 sselda φ a A a On
23 22 adantrr φ a A c C a On
24 3 sselda φ c C c On
25 24 adantrl φ a A c C c On
26 25 adantr φ a A c C b B c On
27 ontr2 a On c On a b b c a c
28 23 26 27 syl2an2r φ a A c C b B a b b c a c
29 21 28 mpan2d φ a A c C b B a b a c
30 29 rexlimdva φ a A c C b B a b a c
31 14 30 mpd φ a A c C a c
32 31 ralrimivva φ a A c C a c