Step |
Hyp |
Ref |
Expression |
1 |
|
coflton.1 |
|
2 |
|
coflton.2 |
|
3 |
|
coflton.3 |
|
4 |
|
coflton.4 |
|
5 |
|
coflton.5 |
|
6 |
|
sseq1 |
|
7 |
6
|
rexbidv |
|
8 |
4
|
adantr |
|
9 |
|
simpr |
|
10 |
7 8 9
|
rspcdva |
|
11 |
10
|
adantrr |
|
12 |
|
sseq2 |
|
13 |
12
|
cbvrexvw |
|
14 |
11 13
|
sylib |
|
15 |
|
simpr |
|
16 |
|
simplrr |
|
17 |
5
|
ad2antrr |
|
18 |
|
elequ1 |
|
19 |
|
elequ2 |
|
20 |
18 19
|
rspc2va |
|
21 |
15 16 17 20
|
syl21anc |
|
22 |
1
|
sselda |
|
23 |
22
|
adantrr |
|
24 |
3
|
sselda |
|
25 |
24
|
adantrl |
|
26 |
25
|
adantr |
|
27 |
|
ontr2 |
|
28 |
23 26 27
|
syl2an2r |
|
29 |
21 28
|
mpan2d |
|
30 |
29
|
rexlimdva |
|
31 |
14 30
|
mpd |
|
32 |
31
|
ralrimivva |
|