Metamath Proof Explorer


Theorem coflton

Description: Cofinality theorem for ordinals. If A is cofinal with B and B precedes C , then A precedes C . Compare cofsslt for surreals. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses coflton.1 φAOn
coflton.2 φBOn
coflton.3 φCOn
coflton.4 φxAyBxy
coflton.5 φzBwCzw
Assertion coflton φaAcCac

Proof

Step Hyp Ref Expression
1 coflton.1 φAOn
2 coflton.2 φBOn
3 coflton.3 φCOn
4 coflton.4 φxAyBxy
5 coflton.5 φzBwCzw
6 sseq1 x=axyay
7 6 rexbidv x=ayBxyyBay
8 4 adantr φaAxAyBxy
9 simpr φaAaA
10 7 8 9 rspcdva φaAyBay
11 10 adantrr φaAcCyBay
12 sseq2 y=bayab
13 12 cbvrexvw yBaybBab
14 11 13 sylib φaAcCbBab
15 simpr φaAcCbBbB
16 simplrr φaAcCbBcC
17 5 ad2antrr φaAcCbBzBwCzw
18 elequ1 z=bzwbw
19 elequ2 w=cbwbc
20 18 19 rspc2va bBcCzBwCzwbc
21 15 16 17 20 syl21anc φaAcCbBbc
22 1 sselda φaAaOn
23 22 adantrr φaAcCaOn
24 3 sselda φcCcOn
25 24 adantrl φaAcCcOn
26 25 adantr φaAcCbBcOn
27 ontr2 aOncOnabbcac
28 23 26 27 syl2an2r φaAcCbBabbcac
29 21 28 mpan2d φaAcCbBabac
30 29 rexlimdva φaAcCbBabac
31 14 30 mpd φaAcCac
32 31 ralrimivva φaAcCac