Metamath Proof Explorer


Theorem cofmpt

Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses cofmpt.1 φ F : C D
cofmpt.2 φ x A B C
Assertion cofmpt φ F x A B = x A F B

Proof

Step Hyp Ref Expression
1 cofmpt.1 φ F : C D
2 cofmpt.2 φ x A B C
3 eqidd φ x A B = x A B
4 1 feqmptd φ F = y C F y
5 fveq2 y = B F y = F B
6 2 3 4 5 fmptco φ F x A B = x A F B