Metamath Proof Explorer


Theorem cofmpt2

Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 15-Jul-2023)

Ref Expression
Hypotheses cofmpt2.1 φ y = F x C = D
cofmpt2.2 φ y B C E
cofmpt2.3 φ F : A B
cofmpt2.4 φ D V
Assertion cofmpt2 φ y B C F = x A D

Proof

Step Hyp Ref Expression
1 cofmpt2.1 φ y = F x C = D
2 cofmpt2.2 φ y B C E
3 cofmpt2.3 φ F : A B
4 cofmpt2.4 φ D V
5 2 fmpttd φ y B C : B E
6 fcompt y B C : B E F : A B y B C F = x A y B C F x
7 5 3 6 syl2anc φ y B C F = x A y B C F x
8 eqid y B C = y B C
9 1 adantlr φ x A y = F x C = D
10 3 ffvelrnda φ x A F x B
11 4 adantr φ x A D V
12 8 9 10 11 fvmptd2 φ x A y B C F x = D
13 12 mpteq2dva φ x A y B C F x = x A D
14 7 13 eqtrd φ y B C F = x A D