Metamath Proof Explorer


Theorem cofon1

Description: Cofinality theorem for ordinals. If A is cofinal with B and the upper bound of A dominates B , then their upper bounds are equal. Compare with cofcut1 for surreals. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses cofon1.1 φ A 𝒫 On
cofon1.2 φ x A y B x y
cofon1.3 φ B z On | A z
Assertion cofon1 φ z On | A z = w On | B w

Proof

Step Hyp Ref Expression
1 cofon1.1 φ A 𝒫 On
2 cofon1.2 φ x A y B x y
3 cofon1.3 φ B z On | A z
4 sseq2 w = z B w B z
5 4 cbvrabv w On | B w = z On | B z
6 sseq1 x = a x y a y
7 6 rexbidv x = a y B x y y B a y
8 2 ad2antrr φ z On B z a A x A y B x y
9 simprr φ z On B z a A a A
10 7 8 9 rspcdva φ z On B z a A y B a y
11 sseq2 y = b a y a b
12 11 cbvrexvw y B a y b B a b
13 10 12 sylib φ z On B z a A b B a b
14 simprl φ z On B z a A B z
15 14 sselda φ z On B z a A b B b z
16 1 elpwid φ A On
17 16 ad3antrrr φ z On B z a A b B A On
18 simplrr φ z On B z a A b B a A
19 17 18 sseldd φ z On B z a A b B a On
20 simpllr φ z On B z a A b B z On
21 ontr2 a On z On a b b z a z
22 19 20 21 syl2anc φ z On B z a A b B a b b z a z
23 15 22 mpan2d φ z On B z a A b B a b a z
24 23 rexlimdva φ z On B z a A b B a b a z
25 13 24 mpd φ z On B z a A a z
26 25 expr φ z On B z a A a z
27 26 ssrdv φ z On B z A z
28 27 ex φ z On B z A z
29 28 ss2rabdv φ z On | B z z On | A z
30 5 29 eqsstrid φ w On | B w z On | A z
31 intss w On | B w z On | A z z On | A z w On | B w
32 30 31 syl φ z On | A z w On | B w
33 sseq2 w = z On | A z B w B z On | A z
34 ssorduni A On Ord A
35 16 34 syl φ Ord A
36 ordsuc Ord A Ord suc A
37 35 36 sylib φ Ord suc A
38 1 uniexd φ A V
39 sucexg A V suc A V
40 38 39 syl φ suc A V
41 elong suc A V suc A On Ord suc A
42 40 41 syl φ suc A On Ord suc A
43 37 42 mpbird φ suc A On
44 onsucuni A On A suc A
45 16 44 syl φ A suc A
46 sseq2 z = suc A A z A suc A
47 46 rspcev suc A On A suc A z On A z
48 43 45 47 syl2anc φ z On A z
49 onintrab2 z On A z z On | A z On
50 48 49 sylib φ z On | A z On
51 33 50 3 elrabd φ z On | A z w On | B w
52 intss1 z On | A z w On | B w w On | B w z On | A z
53 51 52 syl φ w On | B w z On | A z
54 32 53 eqssd φ z On | A z = w On | B w