Metamath Proof Explorer


Theorem cofon2

Description: Cofinality theorem for ordinals. If A and B are mutually cofinal, then their upper bounds agree. Compare cofcut2 for surreals. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses cofon2.1 φ A 𝒫 On
cofon2.2 φ B 𝒫 On
cofon2.3 φ x A y B x y
cofon2.4 φ z B w A z w
Assertion cofon2 φ a On | A a = b On | B b

Proof

Step Hyp Ref Expression
1 cofon2.1 φ A 𝒫 On
2 cofon2.2 φ B 𝒫 On
3 cofon2.3 φ x A y B x y
4 cofon2.4 φ z B w A z w
5 sseq1 z = b z w b w
6 5 rexbidv z = b w A z w w A b w
7 4 adantr φ b B z B w A z w
8 simpr φ b B b B
9 6 7 8 rspcdva φ b B w A b w
10 sseq2 w = c b w b c
11 10 cbvrexvw w A b w c A b c
12 9 11 sylib φ b B c A b c
13 ssintub A a On | A a
14 13 a1i φ b B A a On | A a
15 14 sselda φ b B c A c a On | A a
16 2 elpwid φ B On
17 16 ad2antrr φ b B c A B On
18 simplr φ b B c A b B
19 17 18 sseldd φ b B c A b On
20 1 elpwid φ A On
21 ssorduni A On Ord A
22 20 21 syl φ Ord A
23 ordsuc Ord A Ord suc A
24 22 23 sylib φ Ord suc A
25 1 uniexd φ A V
26 sucexg A V suc A V
27 elong suc A V suc A On Ord suc A
28 25 26 27 3syl φ suc A On Ord suc A
29 24 28 mpbird φ suc A On
30 onsucuni A On A suc A
31 20 30 syl φ A suc A
32 sseq2 a = suc A A a A suc A
33 32 rspcev suc A On A suc A a On A a
34 29 31 33 syl2anc φ a On A a
35 onintrab2 a On A a a On | A a On
36 34 35 sylib φ a On | A a On
37 36 ad2antrr φ b B c A a On | A a On
38 ontr2 b On a On | A a On b c c a On | A a b a On | A a
39 19 37 38 syl2anc φ b B c A b c c a On | A a b a On | A a
40 15 39 mpan2d φ b B c A b c b a On | A a
41 40 rexlimdva φ b B c A b c b a On | A a
42 12 41 mpd φ b B b a On | A a
43 42 ex φ b B b a On | A a
44 43 ssrdv φ B a On | A a
45 1 3 44 cofon1 φ a On | A a = b On | B b