Metamath Proof Explorer


Theorem cofsmo

Description: Any cofinal map implies the existence of a strictly monotone cofinal map with a domain no larger than the original. Proposition 11.7 of TakeutiZaring p. 101. (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Hypotheses cofsmo.1 C = y B | w y f w f y
cofsmo.2 K = x B | z f x
cofsmo.3 O = OrdIso E C
Assertion cofsmo Ord A B On f f : B A z A w B z f w x suc B g g : x A Smo g z A v x z g v

Proof

Step Hyp Ref Expression
1 cofsmo.1 C = y B | w y f w f y
2 cofsmo.2 K = x B | z f x
3 cofsmo.3 O = OrdIso E C
4 1 ssrab3 C B
5 ssexg C B B On C V
6 4 5 mpan B On C V
7 onss B On B On
8 4 7 sstrid B On C On
9 epweon E We On
10 wess C On E We On E We C
11 8 9 10 mpisyl B On E We C
12 3 oiiso C V E We C O Isom E , E dom O C
13 6 11 12 syl2anc B On O Isom E , E dom O C
14 13 ad2antlr Ord A B On f : B A O Isom E , E dom O C
15 isof1o O Isom E , E dom O C O : dom O 1-1 onto C
16 f1ofo O : dom O 1-1 onto C O : dom O onto C
17 14 15 16 3syl Ord A B On f : B A O : dom O onto C
18 fof O : dom O onto C O : dom O C
19 fss O : dom O C C B O : dom O B
20 18 4 19 sylancl O : dom O onto C O : dom O B
21 17 20 syl Ord A B On f : B A O : dom O B
22 3 oion C V dom O On
23 6 22 syl B On dom O On
24 23 ad2antlr Ord A B On f : B A dom O On
25 simplr Ord A B On f : B A B On
26 eloni dom O On Ord dom O
27 smoiso2 Ord dom O C On O : dom O onto C Smo O O Isom E , E dom O C
28 26 8 27 syl2an dom O On B On O : dom O onto C Smo O O Isom E , E dom O C
29 28 biimpar dom O On B On O Isom E , E dom O C O : dom O onto C Smo O
30 29 simprd dom O On B On O Isom E , E dom O C Smo O
31 24 25 14 30 syl21anc Ord A B On f : B A Smo O
32 eloni B On Ord B
33 32 ad2antlr Ord A B On f : B A Ord B
34 smorndom O : dom O B Smo O Ord B dom O B
35 21 31 33 34 syl3anc Ord A B On f : B A dom O B
36 onsssuc dom O On B On dom O B dom O suc B
37 24 25 36 syl2anc Ord A B On f : B A dom O B dom O suc B
38 35 37 mpbid Ord A B On f : B A dom O suc B
39 38 adantrr Ord A B On f : B A z A w B z f w dom O suc B
40 vex f V
41 3 oiexg C V O V
42 6 41 syl B On O V
43 42 ad2antlr Ord A B On f : B A z A w B z f w O V
44 coexg f V O V f O V
45 40 43 44 sylancr Ord A B On f : B A z A w B z f w f O V
46 simprl Ord A B On f : B A z A w B z f w f : B A
47 21 adantrr Ord A B On f : B A z A w B z f w O : dom O B
48 46 47 fcod Ord A B On f : B A z A w B z f w f O : dom O A
49 simpr Ord A B On f : B A f : B A
50 49 21 fcod Ord A B On f : B A f O : dom O A
51 ordsson Ord A A On
52 51 ad2antrr Ord A B On f : B A A On
53 24 26 syl Ord A B On f : B A Ord dom O
54 17 18 syl Ord A B On f : B A O : dom O C
55 simpl s dom O t s s dom O
56 ffvelrn O : dom O C s dom O O s C
57 54 55 56 syl2an Ord A B On f : B A s dom O t s O s C
58 ffn O : dom O C O Fn dom O
59 17 18 58 3syl Ord A B On f : B A O Fn dom O
60 59 31 jca Ord A B On f : B A O Fn dom O Smo O
61 smoel2 O Fn dom O Smo O s dom O t s O t O s
62 60 61 sylan Ord A B On f : B A s dom O t s O t O s
63 fveq2 z = O s f z = f O s
64 63 eleq2d z = O s f x f z f x f O s
65 64 raleqbi1dv z = O s x z f x f z x O s f x f O s
66 fveq2 w = x f w = f x
67 66 eleq1d w = x f w f y f x f y
68 67 cbvralvw w y f w f y x y f x f y
69 fveq2 y = z f y = f z
70 69 eleq2d y = z f x f y f x f z
71 70 raleqbi1dv y = z x y f x f y x z f x f z
72 68 71 syl5bb y = z w y f w f y x z f x f z
73 72 cbvrabv y B | w y f w f y = z B | x z f x f z
74 1 73 eqtri C = z B | x z f x f z
75 65 74 elrab2 O s C O s B x O s f x f O s
76 75 simprbi O s C x O s f x f O s
77 fveq2 x = O t f x = f O t
78 77 eleq1d x = O t f x f O s f O t f O s
79 78 rspccv x O s f x f O s O t O s f O t f O s
80 76 79 syl O s C O t O s f O t f O s
81 57 62 80 sylc Ord A B On f : B A s dom O t s f O t f O s
82 ordtr1 Ord dom O t s s dom O t dom O
83 82 ancomsd Ord dom O s dom O t s t dom O
84 24 26 83 3syl Ord A B On f : B A s dom O t s t dom O
85 84 imp Ord A B On f : B A s dom O t s t dom O
86 fvco3 O : dom O B t dom O f O t = f O t
87 21 85 86 syl2an2r Ord A B On f : B A s dom O t s f O t = f O t
88 simprl Ord A B On f : B A s dom O t s s dom O
89 fvco3 O : dom O B s dom O f O s = f O s
90 21 88 89 syl2an2r Ord A B On f : B A s dom O t s f O s = f O s
91 81 87 90 3eltr4d Ord A B On f : B A s dom O t s f O t f O s
92 91 ralrimivva Ord A B On f : B A s dom O t s f O t f O s
93 issmo2 f O : dom O A A On Ord dom O s dom O t s f O t f O s Smo f O
94 93 imp f O : dom O A A On Ord dom O s dom O t s f O t f O s Smo f O
95 50 52 53 92 94 syl13anc Ord A B On f : B A Smo f O
96 95 adantrr Ord A B On f : B A z A w B z f w Smo f O
97 rabn0 w B | z f w w B z f w
98 ssrab2 w B | z f w B
99 98 7 sstrid B On w B | z f w On
100 fveq2 x = w f x = f w
101 100 sseq2d x = w z f x z f w
102 101 cbvrabv x B | z f x = w B | z f w
103 102 inteqi x B | z f x = w B | z f w
104 2 103 eqtri K = w B | z f w
105 onint w B | z f w On w B | z f w w B | z f w w B | z f w
106 104 105 eqeltrid w B | z f w On w B | z f w K w B | z f w
107 99 106 sylan B On w B | z f w K w B | z f w
108 97 107 sylan2br B On w B z f w K w B | z f w
109 fveq2 w = K f w = f K
110 109 sseq2d w = K z f w z f K
111 110 elrab K w B | z f w K B z f K
112 108 111 sylib B On w B z f w K B z f K
113 112 ex B On w B z f w K B z f K
114 113 adantl Ord A B On w B z f w K B z f K
115 simpr2 Ord A B On f : B A K B z f K K B
116 simp3 Ord A B On f : B A K B z f K w K w K
117 104 eleq2i w K w w B | z f w
118 simp21 Ord A B On f : B A K B z f K w K f : B A
119 simp1l Ord A B On f : B A K B z f K w K Ord A
120 119 51 syl Ord A B On f : B A K B z f K w K A On
121 118 120 fssd Ord A B On f : B A K B z f K w K f : B On
122 simp22 Ord A B On f : B A K B z f K w K K B
123 121 122 ffvelrnd Ord A B On f : B A K B z f K w K f K On
124 simp1r Ord A B On f : B A K B z f K w K B On
125 ontr1 B On w K K B w B
126 125 3impib B On w K K B w B
127 124 116 122 126 syl3anc Ord A B On f : B A K B z f K w K w B
128 121 127 ffvelrnd Ord A B On f : B A K B z f K w K f w On
129 ontri1 f K On f w On f K f w ¬ f w f K
130 123 128 129 syl2anc Ord A B On f : B A K B z f K w K f K f w ¬ f w f K
131 simp23 Ord A B On f : B A K B z f K w K z f K
132 simpl1 B On w K K B z f K f K f w B On
133 132 99 syl B On w K K B z f K f K f w w B | z f w On
134 sstr z f K f K f w z f w
135 126 134 anim12i B On w K K B z f K f K f w w B z f w
136 rabid w w B | z f w w B z f w
137 135 136 sylibr B On w K K B z f K f K f w w w B | z f w
138 onnmin w B | z f w On w w B | z f w ¬ w w B | z f w
139 133 137 138 syl2anc B On w K K B z f K f K f w ¬ w w B | z f w
140 139 expr B On w K K B z f K f K f w ¬ w w B | z f w
141 124 116 122 131 140 syl31anc Ord A B On f : B A K B z f K w K f K f w ¬ w w B | z f w
142 130 141 sylbird Ord A B On f : B A K B z f K w K ¬ f w f K ¬ w w B | z f w
143 142 con4d Ord A B On f : B A K B z f K w K w w B | z f w f w f K
144 117 143 syl5bi Ord A B On f : B A K B z f K w K w K f w f K
145 116 144 mpd Ord A B On f : B A K B z f K w K f w f K
146 145 3expia Ord A B On f : B A K B z f K w K f w f K
147 146 ralrimiv Ord A B On f : B A K B z f K w K f w f K
148 fveq2 y = K f y = f K
149 148 eleq2d y = K f w f y f w f K
150 149 raleqbi1dv y = K w y f w f y w K f w f K
151 150 1 elrab2 K C K B w K f w f K
152 115 147 151 sylanbrc Ord A B On f : B A K B z f K K C
153 152 expcom f : B A K B z f K Ord A B On K C
154 153 3expib f : B A K B z f K Ord A B On K C
155 154 com13 Ord A B On K B z f K f : B A K C
156 114 155 syld Ord A B On w B z f w f : B A K C
157 156 com23 Ord A B On f : B A w B z f w K C
158 157 imp31 Ord A B On f : B A w B z f w K C
159 foelrn O : dom O onto C K C v dom O K = O v
160 17 158 159 syl2an2r Ord A B On f : B A w B z f w v dom O K = O v
161 eleq1 K = O v K w B | z f w O v w B | z f w
162 161 biimpcd K w B | z f w K = O v O v w B | z f w
163 fveq2 x = O v f x = f O v
164 163 sseq2d x = O v z f x z f O v
165 66 sseq2d w = x z f w z f x
166 165 cbvrabv w B | z f w = x B | z f x
167 164 166 elrab2 O v w B | z f w O v B z f O v
168 167 simprbi O v w B | z f w z f O v
169 162 168 syl6 K w B | z f w K = O v z f O v
170 108 169 syl B On w B z f w K = O v z f O v
171 170 ad5ant24 Ord A B On f : B A w B z f w v dom O K = O v z f O v
172 21 ad2antrr Ord A B On f : B A w B z f w v dom O O : dom O B
173 fvco3 O : dom O B v dom O f O v = f O v
174 172 173 sylancom Ord A B On f : B A w B z f w v dom O f O v = f O v
175 174 sseq2d Ord A B On f : B A w B z f w v dom O z f O v z f O v
176 171 175 sylibrd Ord A B On f : B A w B z f w v dom O K = O v z f O v
177 176 reximdva Ord A B On f : B A w B z f w v dom O K = O v v dom O z f O v
178 160 177 mpd Ord A B On f : B A w B z f w v dom O z f O v
179 178 ex Ord A B On f : B A w B z f w v dom O z f O v
180 179 ralimdv Ord A B On f : B A z A w B z f w z A v dom O z f O v
181 180 impr Ord A B On f : B A z A w B z f w z A v dom O z f O v
182 48 96 181 3jca Ord A B On f : B A z A w B z f w f O : dom O A Smo f O z A v dom O z f O v
183 feq1 g = f O g : dom O A f O : dom O A
184 smoeq g = f O Smo g Smo f O
185 fveq1 g = f O g v = f O v
186 185 sseq2d g = f O z g v z f O v
187 186 rexbidv g = f O v dom O z g v v dom O z f O v
188 187 ralbidv g = f O z A v dom O z g v z A v dom O z f O v
189 183 184 188 3anbi123d g = f O g : dom O A Smo g z A v dom O z g v f O : dom O A Smo f O z A v dom O z f O v
190 45 182 189 spcedv Ord A B On f : B A z A w B z f w g g : dom O A Smo g z A v dom O z g v
191 feq2 x = dom O g : x A g : dom O A
192 rexeq x = dom O v x z g v v dom O z g v
193 192 ralbidv x = dom O z A v x z g v z A v dom O z g v
194 191 193 3anbi13d x = dom O g : x A Smo g z A v x z g v g : dom O A Smo g z A v dom O z g v
195 194 exbidv x = dom O g g : x A Smo g z A v x z g v g g : dom O A Smo g z A v dom O z g v
196 195 rspcev dom O suc B g g : dom O A Smo g z A v dom O z g v x suc B g g : x A Smo g z A v x z g v
197 39 190 196 syl2anc Ord A B On f : B A z A w B z f w x suc B g g : x A Smo g z A v x z g v
198 197 ex Ord A B On f : B A z A w B z f w x suc B g g : x A Smo g z A v x z g v
199 198 exlimdv Ord A B On f f : B A z A w B z f w x suc B g g : x A Smo g z A v x z g v