Database
SURREAL NUMBERS
Conway cut representation
Cofinality and coinitiality
cofss
Next ⟩
coiniss
Metamath Proof Explorer
Ascii
Unicode
Theorem
cofss
Description:
Cofinality for a subset.
(Contributed by
Scott Fenton
, 13-Mar-2025)
Ref
Expression
Hypotheses
cofss.1
⊢
φ
→
A
⊆
No
cofss.2
⊢
φ
→
B
⊆
A
Assertion
cofss
⊢
φ
→
∀
x
∈
B
∃
y
∈
A
x
≤
s
y
Proof
Step
Hyp
Ref
Expression
1
cofss.1
⊢
φ
→
A
⊆
No
2
cofss.2
⊢
φ
→
B
⊆
A
3
2
sselda
⊢
φ
∧
z
∈
B
→
z
∈
A
4
2
1
sstrd
⊢
φ
→
B
⊆
No
5
4
sselda
⊢
φ
∧
z
∈
B
→
z
∈
No
6
slerflex
⊢
z
∈
No
→
z
≤
s
z
7
5
6
syl
⊢
φ
∧
z
∈
B
→
z
≤
s
z
8
breq2
⊢
y
=
z
→
z
≤
s
y
↔
z
≤
s
z
9
8
rspcev
⊢
z
∈
A
∧
z
≤
s
z
→
∃
y
∈
A
z
≤
s
y
10
3
7
9
syl2anc
⊢
φ
∧
z
∈
B
→
∃
y
∈
A
z
≤
s
y
11
10
ralrimiva
⊢
φ
→
∀
z
∈
B
∃
y
∈
A
z
≤
s
y
12
breq1
⊢
x
=
z
→
x
≤
s
y
↔
z
≤
s
y
13
12
rexbidv
⊢
x
=
z
→
∃
y
∈
A
x
≤
s
y
↔
∃
y
∈
A
z
≤
s
y
14
13
cbvralvw
⊢
∀
x
∈
B
∃
y
∈
A
x
≤
s
y
↔
∀
z
∈
B
∃
y
∈
A
z
≤
s
y
15
11
14
sylibr
⊢
φ
→
∀
x
∈
B
∃
y
∈
A
x
≤
s
y