Metamath Proof Explorer


Theorem coftr

Description: If there is a cofinal map from B to A and another from C to A , then there is also a cofinal map from C to B . Proposition 11.9 of TakeutiZaring p. 102. A limited form of transitivity for the "cof" relation. This is really a lemma for cfcof . (Contributed by Mario Carneiro, 16-Mar-2013)

Ref Expression
Hypothesis coftr.1 H=tCnB|gtfn
Assertion coftr ff:BASmofxAyBxfygg:CAzAwCzgwhh:CBsBwCshw

Proof

Step Hyp Ref Expression
1 coftr.1 H=tCnB|gtfn
2 fdm g:CAdomg=C
3 vex gV
4 3 dmex domgV
5 2 4 eqeltrrdi g:CACV
6 fveq2 t=wgt=gw
7 6 sseq1d t=wgtfngwfn
8 7 rabbidv t=wnB|gtfn=nB|gwfn
9 8 inteqd t=wnB|gtfn=nB|gwfn
10 9 cbvmptv tCnB|gtfn=wCnB|gwfn
11 1 10 eqtri H=wCnB|gwfn
12 mptexg CVwCnB|gwfnV
13 11 12 eqeltrid CVHV
14 5 13 syl g:CAHV
15 14 ad2antrl f:BASmofxAyBxfyg:CAzAwCzgwHV
16 ffn f:BAfFnB
17 smodm2 fFnBSmofOrdB
18 16 17 sylan f:BASmofOrdB
19 18 3adant3 f:BASmofxAyBxfyOrdB
20 19 adantr f:BASmofxAyBxfyg:CAzAwCzgwOrdB
21 simpl3 f:BASmofxAyBxfyg:CAzAwCzgwxAyBxfy
22 simprl f:BASmofxAyBxfyg:CAzAwCzgwg:CA
23 simpl1 OrdBxAyBxfyg:CAwCOrdB
24 simpl2 OrdBxAyBxfyg:CAwCxAyBxfy
25 ffvelrn g:CAwCgwA
26 25 3ad2antl3 OrdBxAyBxfyg:CAwCgwA
27 sseq1 x=gwxfygwfy
28 27 rexbidv x=gwyBxfyyBgwfy
29 28 rspccv xAyBxfygwAyBgwfy
30 24 26 29 sylc OrdBxAyBxfyg:CAwCyBgwfy
31 ssrab2 nB|gwfnB
32 ordsson OrdBBOn
33 31 32 sstrid OrdBnB|gwfnOn
34 fveq2 n=yfn=fy
35 34 sseq2d n=ygwfngwfy
36 35 rspcev yBgwfynBgwfn
37 rabn0 nB|gwfnnBgwfn
38 36 37 sylibr yBgwfynB|gwfn
39 oninton nB|gwfnOnnB|gwfnnB|gwfnOn
40 33 38 39 syl2an OrdByBgwfynB|gwfnOn
41 eloni nB|gwfnOnOrdnB|gwfn
42 40 41 syl OrdByBgwfyOrdnB|gwfn
43 simpl OrdByBgwfyOrdB
44 35 intminss yBgwfynB|gwfny
45 44 adantl OrdByBgwfynB|gwfny
46 simprl OrdByBgwfyyB
47 ordtr2 OrdnB|gwfnOrdBnB|gwfnyyBnB|gwfnB
48 47 imp OrdnB|gwfnOrdBnB|gwfnyyBnB|gwfnB
49 42 43 45 46 48 syl22anc OrdByBgwfynB|gwfnB
50 49 rexlimdvaa OrdByBgwfynB|gwfnB
51 23 30 50 sylc OrdBxAyBxfyg:CAwCnB|gwfnB
52 51 11 fmptd OrdBxAyBxfyg:CAH:CB
53 20 21 22 52 syl3anc f:BASmofxAyBxfyg:CAzAwCzgwH:CB
54 simprr f:BASmofxAyBxfyg:CAzAwCzgwzAwCzgw
55 simpl1 f:BASmofxAyBxfyg:CAzAwCzgwf:BA
56 ffvelrn f:BAsBfsA
57 sseq1 z=fszgwfsgw
58 57 rexbidv z=fswCzgwwCfsgw
59 58 rspccv zAwCzgwfsAwCfsgw
60 56 59 syl5 zAwCzgwf:BAsBwCfsgw
61 60 expdimp zAwCzgwf:BAsBwCfsgw
62 54 55 61 syl2anc f:BASmofxAyBxfyg:CAzAwCzgwsBwCfsgw
63 55 16 syl f:BASmofxAyBxfyg:CAzAwCzgwfFnB
64 simpl2 f:BASmofxAyBxfyg:CAzAwCzgwSmof
65 simpr OrdBxAyBxfyg:CAwCwC
66 65 51 jca OrdBxAyBxfyg:CAwCwCnB|gwfnB
67 35 elrab ynB|gwfnyBgwfy
68 sstr2 fsgwgwfyfsfy
69 smoword fFnBSmofsByBsyfsfy
70 69 biimprd fFnBSmofsByBfsfysy
71 68 70 syl9r fFnBSmofsByBfsgwgwfysy
72 71 expr fFnBSmofsByBfsgwgwfysy
73 72 com23 fFnBSmofsBfsgwyBgwfysy
74 73 imp4b fFnBSmofsBfsgwyBgwfysy
75 67 74 syl5bi fFnBSmofsBfsgwynB|gwfnsy
76 75 ralrimiv fFnBSmofsBfsgwynB|gwfnsy
77 ssint snB|gwfnynB|gwfnsy
78 76 77 sylibr fFnBSmofsBfsgwsnB|gwfn
79 9 1 fvmptg wCnB|gwfnBHw=nB|gwfn
80 79 sseq2d wCnB|gwfnBsHwsnB|gwfn
81 78 80 syl5ibrcom fFnBSmofsBfsgwwCnB|gwfnBsHw
82 66 81 syl5 fFnBSmofsBfsgwOrdBxAyBxfyg:CAwCsHw
83 82 ex fFnBSmofsBfsgwOrdBxAyBxfyg:CAwCsHw
84 83 com23 fFnBSmofsBOrdBxAyBxfyg:CAwCfsgwsHw
85 84 expdimp fFnBSmofsBOrdBxAyBxfyg:CAwCfsgwsHw
86 85 reximdvai fFnBSmofsBOrdBxAyBxfyg:CAwCfsgwwCsHw
87 86 ancoms OrdBxAyBxfyg:CAfFnBSmofsBwCfsgwwCsHw
88 87 expr OrdBxAyBxfyg:CAfFnBSmofsBwCfsgwwCsHw
89 20 21 22 63 64 88 syl32anc f:BASmofxAyBxfyg:CAzAwCzgwsBwCfsgwwCsHw
90 62 89 mpdd f:BASmofxAyBxfyg:CAzAwCzgwsBwCsHw
91 90 ralrimiv f:BASmofxAyBxfyg:CAzAwCzgwsBwCsHw
92 feq1 h=Hh:CBH:CB
93 fveq1 h=Hhw=Hw
94 93 sseq2d h=HshwsHw
95 94 rexbidv h=HwCshwwCsHw
96 95 ralbidv h=HsBwCshwsBwCsHw
97 92 96 anbi12d h=Hh:CBsBwCshwH:CBsBwCsHw
98 97 spcegv HVH:CBsBwCsHwhh:CBsBwCshw
99 98 3impib HVH:CBsBwCsHwhh:CBsBwCshw
100 15 53 91 99 syl3anc f:BASmofxAyBxfyg:CAzAwCzgwhh:CBsBwCshw
101 100 ex f:BASmofxAyBxfyg:CAzAwCzgwhh:CBsBwCshw
102 101 exlimdv f:BASmofxAyBxfygg:CAzAwCzgwhh:CBsBwCshw
103 102 exlimiv ff:BASmofxAyBxfygg:CAzAwCzgwhh:CBsBwCshw