Metamath Proof Explorer


Theorem cofu1

Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses cofuval.b B = Base C
cofuval.f φ F C Func D
cofuval.g φ G D Func E
cofu2nd.x φ X B
Assertion cofu1 φ 1 st G func F X = 1 st G 1 st F X

Proof

Step Hyp Ref Expression
1 cofuval.b B = Base C
2 cofuval.f φ F C Func D
3 cofuval.g φ G D Func E
4 cofu2nd.x φ X B
5 1 2 3 cofu1st φ 1 st G func F = 1 st G 1 st F
6 5 fveq1d φ 1 st G func F X = 1 st G 1 st F X
7 eqid Base D = Base D
8 relfunc Rel C Func D
9 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
10 8 2 9 sylancr φ 1 st F C Func D 2 nd F
11 1 7 10 funcf1 φ 1 st F : B Base D
12 fvco3 1 st F : B Base D X B 1 st G 1 st F X = 1 st G 1 st F X
13 11 4 12 syl2anc φ 1 st G 1 st F X = 1 st G 1 st F X
14 6 13 eqtrd φ 1 st G func F X = 1 st G 1 st F X