Metamath Proof Explorer


Theorem cofu1st

Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cofuval.b B = Base C
cofuval.f φ F C Func D
cofuval.g φ G D Func E
Assertion cofu1st φ 1 st G func F = 1 st G 1 st F

Proof

Step Hyp Ref Expression
1 cofuval.b B = Base C
2 cofuval.f φ F C Func D
3 cofuval.g φ G D Func E
4 1 2 3 cofuval φ G func F = 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y
5 4 fveq2d φ 1 st G func F = 1 st 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y
6 fvex 1 st G V
7 fvex 1 st F V
8 6 7 coex 1 st G 1 st F V
9 1 fvexi B V
10 9 9 mpoex x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y V
11 8 10 op1st 1 st 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y = 1 st G 1 st F
12 5 11 eqtrdi φ 1 st G func F = 1 st G 1 st F