Metamath Proof Explorer


Theorem cofu2nd

Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cofuval.b B = Base C
cofuval.f φ F C Func D
cofuval.g φ G D Func E
cofu2nd.x φ X B
cofu2nd.y φ Y B
Assertion cofu2nd φ X 2 nd G func F Y = 1 st F X 2 nd G 1 st F Y X 2 nd F Y

Proof

Step Hyp Ref Expression
1 cofuval.b B = Base C
2 cofuval.f φ F C Func D
3 cofuval.g φ G D Func E
4 cofu2nd.x φ X B
5 cofu2nd.y φ Y B
6 1 2 3 cofuval φ G func F = 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y
7 6 fveq2d φ 2 nd G func F = 2 nd 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y
8 fvex 1 st G V
9 fvex 1 st F V
10 8 9 coex 1 st G 1 st F V
11 1 fvexi B V
12 11 11 mpoex x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y V
13 10 12 op2nd 2 nd 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y = x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y
14 7 13 eqtrdi φ 2 nd G func F = x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y
15 simprl φ x = X y = Y x = X
16 15 fveq2d φ x = X y = Y 1 st F x = 1 st F X
17 simprr φ x = X y = Y y = Y
18 17 fveq2d φ x = X y = Y 1 st F y = 1 st F Y
19 16 18 oveq12d φ x = X y = Y 1 st F x 2 nd G 1 st F y = 1 st F X 2 nd G 1 st F Y
20 15 17 oveq12d φ x = X y = Y x 2 nd F y = X 2 nd F Y
21 19 20 coeq12d φ x = X y = Y 1 st F x 2 nd G 1 st F y x 2 nd F y = 1 st F X 2 nd G 1 st F Y X 2 nd F Y
22 ovex 1 st F X 2 nd G 1 st F Y V
23 ovex X 2 nd F Y V
24 22 23 coex 1 st F X 2 nd G 1 st F Y X 2 nd F Y V
25 24 a1i φ 1 st F X 2 nd G 1 st F Y X 2 nd F Y V
26 14 21 4 5 25 ovmpod φ X 2 nd G func F Y = 1 st F X 2 nd G 1 st F Y X 2 nd F Y