Step |
Hyp |
Ref |
Expression |
1 |
|
cofulid.g |
|
2 |
|
cofulid.1 |
|
3 |
|
eqid |
|
4 |
|
funcrcl |
|
5 |
1 4
|
syl |
|
6 |
5
|
simprd |
|
7 |
2 3 6
|
idfu1st |
|
8 |
7
|
coeq1d |
|
9 |
|
eqid |
|
10 |
|
relfunc |
|
11 |
|
1st2ndbr |
|
12 |
10 1 11
|
sylancr |
|
13 |
9 3 12
|
funcf1 |
|
14 |
|
fcoi2 |
|
15 |
13 14
|
syl |
|
16 |
8 15
|
eqtrd |
|
17 |
6
|
3ad2ant1 |
|
18 |
|
eqid |
|
19 |
13
|
ffvelrnda |
|
20 |
19
|
3adant3 |
|
21 |
13
|
ffvelrnda |
|
22 |
21
|
3adant2 |
|
23 |
2 3 17 18 20 22
|
idfu2nd |
|
24 |
23
|
coeq1d |
|
25 |
|
eqid |
|
26 |
12
|
3ad2ant1 |
|
27 |
|
simp2 |
|
28 |
|
simp3 |
|
29 |
9 25 18 26 27 28
|
funcf2 |
|
30 |
|
fcoi2 |
|
31 |
29 30
|
syl |
|
32 |
24 31
|
eqtrd |
|
33 |
32
|
mpoeq3dva |
|
34 |
9 12
|
funcfn2 |
|
35 |
|
fnov |
|
36 |
34 35
|
sylib |
|
37 |
33 36
|
eqtr4d |
|
38 |
16 37
|
opeq12d |
|
39 |
2
|
idfucl |
|
40 |
6 39
|
syl |
|
41 |
9 1 40
|
cofuval |
|
42 |
|
1st2nd |
|
43 |
10 1 42
|
sylancr |
|
44 |
38 41 43
|
3eqtr4d |
|