Metamath Proof Explorer


Theorem cofunex2g

Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007)

Ref Expression
Assertion cofunex2g A V Fun B -1 A B V

Proof

Step Hyp Ref Expression
1 cnvexg A V A -1 V
2 cofunexg Fun B -1 A -1 V B -1 A -1 V
3 1 2 sylan2 Fun B -1 A V B -1 A -1 V
4 cnvco B -1 A -1 -1 = A -1 -1 B -1 -1
5 cocnvcnv2 A -1 -1 B -1 -1 = A -1 -1 B
6 cocnvcnv1 A -1 -1 B = A B
7 4 5 6 3eqtrri A B = B -1 A -1 -1
8 cnvexg B -1 A -1 V B -1 A -1 -1 V
9 7 8 eqeltrid B -1 A -1 V A B V
10 3 9 syl Fun B -1 A V A B V
11 10 ancoms A V Fun B -1 A B V