Metamath Proof Explorer


Theorem cofunexg

Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007)

Ref Expression
Assertion cofunexg Fun A B C A B V

Proof

Step Hyp Ref Expression
1 relco Rel A B
2 relssdmrn Rel A B A B dom A B × ran A B
3 1 2 ax-mp A B dom A B × ran A B
4 dmcoss dom A B dom B
5 dmexg B C dom B V
6 ssexg dom A B dom B dom B V dom A B V
7 4 5 6 sylancr B C dom A B V
8 7 adantl Fun A B C dom A B V
9 rnco ran A B = ran A ran B
10 rnexg B C ran B V
11 resfunexg Fun A ran B V A ran B V
12 10 11 sylan2 Fun A B C A ran B V
13 rnexg A ran B V ran A ran B V
14 12 13 syl Fun A B C ran A ran B V
15 9 14 eqeltrid Fun A B C ran A B V
16 8 15 xpexd Fun A B C dom A B × ran A B V
17 ssexg A B dom A B × ran A B dom A B × ran A B V A B V
18 3 16 17 sylancr Fun A B C A B V