Metamath Proof Explorer


Theorem coi1

Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)

Ref Expression
Assertion coi1 Rel A A I = A

Proof

Step Hyp Ref Expression
1 relco Rel A I
2 vex x V
3 vex y V
4 2 3 opelco x y A I z x I z z A y
5 vex z V
6 5 ideq x I z x = z
7 equcom x = z z = x
8 6 7 bitri x I z z = x
9 8 anbi1i x I z z A y z = x z A y
10 9 exbii z x I z z A y z z = x z A y
11 breq1 z = x z A y x A y
12 11 equsexvw z z = x z A y x A y
13 10 12 bitri z x I z z A y x A y
14 4 13 bitri x y A I x A y
15 df-br x A y x y A
16 14 15 bitri x y A I x y A
17 16 eqrelriv Rel A I Rel A A I = A
18 1 17 mpan Rel A A I = A