Metamath Proof Explorer


Theorem coi2

Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)

Ref Expression
Assertion coi2 Rel A I A = A

Proof

Step Hyp Ref Expression
1 dfrel2 Rel A A -1 -1 = A
2 cnvco A -1 I -1 = I -1 A -1 -1
3 relcnv Rel A -1
4 coi1 Rel A -1 A -1 I = A -1
5 3 4 ax-mp A -1 I = A -1
6 5 cnveqi A -1 I -1 = A -1 -1
7 2 6 eqtr3i I -1 A -1 -1 = A -1 -1
8 cnvi I -1 = I
9 coeq2 A -1 -1 = A I -1 A -1 -1 = I -1 A
10 coeq1 I -1 = I I -1 A = I A
11 9 10 sylan9eq A -1 -1 = A I -1 = I I -1 A -1 -1 = I A
12 8 11 mpan2 A -1 -1 = A I -1 A -1 -1 = I A
13 id A -1 -1 = A A -1 -1 = A
14 7 12 13 3eqtr3a A -1 -1 = A I A = A
15 1 14 sylbi Rel A I A = A