Database
SURREAL NUMBERS
Conway cut representation
Cofinality and coinitiality
coiniss
Next ⟩
cutlt
Metamath Proof Explorer
Ascii
Unicode
Theorem
coiniss
Description:
Coinitiality for a subset.
(Contributed by
Scott Fenton
, 13-Mar-2025)
Ref
Expression
Hypotheses
cofss.1
⊢
φ
→
A
⊆
No
cofss.2
⊢
φ
→
B
⊆
A
Assertion
coiniss
⊢
φ
→
∀
x
∈
B
∃
y
∈
A
y
≤
s
x
Proof
Step
Hyp
Ref
Expression
1
cofss.1
⊢
φ
→
A
⊆
No
2
cofss.2
⊢
φ
→
B
⊆
A
3
2
sselda
⊢
φ
∧
z
∈
B
→
z
∈
A
4
2
1
sstrd
⊢
φ
→
B
⊆
No
5
4
sselda
⊢
φ
∧
z
∈
B
→
z
∈
No
6
slerflex
⊢
z
∈
No
→
z
≤
s
z
7
5
6
syl
⊢
φ
∧
z
∈
B
→
z
≤
s
z
8
breq1
⊢
y
=
z
→
y
≤
s
z
↔
z
≤
s
z
9
8
rspcev
⊢
z
∈
A
∧
z
≤
s
z
→
∃
y
∈
A
y
≤
s
z
10
3
7
9
syl2anc
⊢
φ
∧
z
∈
B
→
∃
y
∈
A
y
≤
s
z
11
10
ralrimiva
⊢
φ
→
∀
z
∈
B
∃
y
∈
A
y
≤
s
z
12
breq2
⊢
x
=
z
→
y
≤
s
x
↔
y
≤
s
z
13
12
rexbidv
⊢
x
=
z
→
∃
y
∈
A
y
≤
s
x
↔
∃
y
∈
A
y
≤
s
z
14
13
cbvralvw
⊢
∀
x
∈
B
∃
y
∈
A
y
≤
s
x
↔
∀
z
∈
B
∃
y
∈
A
y
≤
s
z
15
11
14
sylibr
⊢
φ
→
∀
x
∈
B
∃
y
∈
A
y
≤
s
x