Metamath Proof Explorer


Theorem colhp

Description: Half-plane relation for colinear points. Theorem 9.19 of Schwabhauser p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020)

Ref Expression
Hypotheses hpgid.p P = Base G
hpgid.i I = Itv G
hpgid.l L = Line 𝒢 G
hpgid.g φ G 𝒢 Tarski
hpgid.d φ D ran L
hpgid.a φ A P
hpgid.o O = a b | a P D b P D t D t a I b
colopp.b φ B P
colopp.p φ C D
colopp.1 φ C A L B A = B
colhp.k K = hl 𝒢 G
Assertion colhp φ A hp 𝒢 G D B A K C B ¬ A D

Proof

Step Hyp Ref Expression
1 hpgid.p P = Base G
2 hpgid.i I = Itv G
3 hpgid.l L = Line 𝒢 G
4 hpgid.g φ G 𝒢 Tarski
5 hpgid.d φ D ran L
6 hpgid.a φ A P
7 hpgid.o O = a b | a P D b P D t D t a I b
8 colopp.b φ B P
9 colopp.p φ C D
10 colopp.1 φ C A L B A = B
11 colhp.k K = hl 𝒢 G
12 ancom A K C B ¬ A D ¬ A D A K C B
13 12 a1i φ A K C B ¬ A D ¬ A D A K C B
14 4 adantr φ ¬ A D G 𝒢 Tarski
15 5 adantr φ ¬ A D D ran L
16 8 adantr φ ¬ A D B P
17 eqid dist G = dist G
18 eqid pInv 𝒢 G = pInv 𝒢 G
19 1 3 2 4 5 9 tglnpt φ C P
20 eqid pInv 𝒢 G C = pInv 𝒢 G C
21 1 17 2 3 18 4 19 20 6 mircl φ pInv 𝒢 G C A P
22 21 adantr φ ¬ A D pInv 𝒢 G C A P
23 9 adantr φ ¬ A D C D
24 19 adantr φ ¬ A D C P
25 6 adantr φ ¬ A D A P
26 nelne2 C D ¬ A D C A
27 9 26 sylan φ ¬ A D C A
28 27 necomd φ ¬ A D A C
29 1 17 2 3 18 4 19 20 6 mirbtwn φ C pInv 𝒢 G C A I A
30 1 17 2 4 21 19 6 29 tgbtwncom φ C A I pInv 𝒢 G C A
31 30 adantr φ ¬ A D C A I pInv 𝒢 G C A
32 1 2 3 14 25 24 22 28 31 btwnlng3 φ ¬ A D pInv 𝒢 G C A A L C
33 1 3 2 4 6 8 19 10 colrot1 φ A B L C B = C
34 1 3 2 4 8 19 6 33 colcom φ A C L B C = B
35 34 adantr φ ¬ A D A C L B C = B
36 1 2 3 14 22 25 24 16 32 35 coltr φ ¬ A D pInv 𝒢 G C A C L B C = B
37 1 3 2 14 24 16 22 36 colrot1 φ ¬ A D C B L pInv 𝒢 G C A B = pInv 𝒢 G C A
38 1 2 3 14 15 16 7 22 23 37 colopp φ ¬ A D B O pInv 𝒢 G C A C B I pInv 𝒢 G C A ¬ B D ¬ pInv 𝒢 G C A D
39 simpr φ ¬ A D ¬ A D
40 1 17 2 3 18 4 19 20 6 mirmir φ pInv 𝒢 G C pInv 𝒢 G C A = A
41 40 adantr φ pInv 𝒢 G C A D pInv 𝒢 G C pInv 𝒢 G C A = A
42 4 adantr φ pInv 𝒢 G C A D G 𝒢 Tarski
43 5 adantr φ pInv 𝒢 G C A D D ran L
44 9 adantr φ pInv 𝒢 G C A D C D
45 simpr φ pInv 𝒢 G C A D pInv 𝒢 G C A D
46 1 17 2 3 18 42 20 43 44 45 mirln φ pInv 𝒢 G C A D pInv 𝒢 G C pInv 𝒢 G C A D
47 41 46 eqeltrrd φ pInv 𝒢 G C A D A D
48 47 stoic1a φ ¬ A D ¬ pInv 𝒢 G C A D
49 simpr φ t = C t = C
50 49 eleq1d φ t = C t A I pInv 𝒢 G C A C A I pInv 𝒢 G C A
51 9 50 30 rspcedvd φ t D t A I pInv 𝒢 G C A
52 51 adantr φ ¬ A D t D t A I pInv 𝒢 G C A
53 39 48 52 jca31 φ ¬ A D ¬ A D ¬ pInv 𝒢 G C A D t D t A I pInv 𝒢 G C A
54 1 17 2 7 25 22 islnopp φ ¬ A D A O pInv 𝒢 G C A ¬ A D ¬ pInv 𝒢 G C A D t D t A I pInv 𝒢 G C A
55 53 54 mpbird φ ¬ A D A O pInv 𝒢 G C A
56 1 2 3 7 14 15 25 16 22 55 lnopp2hpgb φ ¬ A D B O pInv 𝒢 G C A A hp 𝒢 G D B
57 8 ad2antrr φ ¬ A D C B I pInv 𝒢 G C A ¬ B D B P
58 6 ad2antrr φ ¬ A D C B I pInv 𝒢 G C A ¬ B D A P
59 19 ad2antrr φ ¬ A D C B I pInv 𝒢 G C A ¬ B D C P
60 4 ad2antrr φ ¬ A D C B I pInv 𝒢 G C A ¬ B D G 𝒢 Tarski
61 9 ad2antrr φ ¬ A D C B I pInv 𝒢 G C A ¬ B D C D
62 simprr φ ¬ A D C B I pInv 𝒢 G C A ¬ B D ¬ B D
63 nelne2 C D ¬ B D C B
64 63 necomd C D ¬ B D B C
65 61 62 64 syl2anc φ ¬ A D C B I pInv 𝒢 G C A ¬ B D B C
66 28 adantr φ ¬ A D C B I pInv 𝒢 G C A ¬ B D A C
67 simprl φ ¬ A D C B I pInv 𝒢 G C A ¬ B D C B I pInv 𝒢 G C A
68 1 17 2 3 18 60 20 11 59 57 58 58 65 66 67 mirhl2 φ ¬ A D C B I pInv 𝒢 G C A ¬ B D B K C A
69 1 2 11 57 58 59 60 68 hlcomd φ ¬ A D C B I pInv 𝒢 G C A ¬ B D A K C B
70 69 3adantr3 φ ¬ A D C B I pInv 𝒢 G C A ¬ B D ¬ pInv 𝒢 G C A D A K C B
71 6 ad2antrr φ ¬ A D A K C B A P
72 8 ad2antrr φ ¬ A D A K C B B P
73 21 ad2antrr φ ¬ A D A K C B pInv 𝒢 G C A P
74 4 ad2antrr φ ¬ A D A K C B G 𝒢 Tarski
75 19 ad2antrr φ ¬ A D A K C B C P
76 simpr φ ¬ A D A K C B A K C B
77 30 ad2antrr φ ¬ A D A K C B C A I pInv 𝒢 G C A
78 1 2 11 71 72 73 74 75 76 77 btwnhl φ ¬ A D A K C B C B I pInv 𝒢 G C A
79 1 2 11 71 72 75 74 3 76 hlln φ ¬ A D A K C B A B L C
80 79 adantr φ ¬ A D A K C B B D A B L C
81 14 ad2antrr φ ¬ A D A K C B B D G 𝒢 Tarski
82 16 ad2antrr φ ¬ A D A K C B B D B P
83 75 adantr φ ¬ A D A K C B B D C P
84 25 ad2antrr φ ¬ A D A K C B B D A P
85 76 adantr φ ¬ A D A K C B B D A K C B
86 1 2 11 84 82 83 81 85 hlne2 φ ¬ A D A K C B B D B C
87 15 ad2antrr φ ¬ A D A K C B B D D ran L
88 simpr φ ¬ A D A K C B B D B D
89 9 ad3antrrr φ ¬ A D A K C B B D C D
90 1 2 3 81 82 83 86 86 87 88 89 tglinethru φ ¬ A D A K C B B D D = B L C
91 80 90 eleqtrrd φ ¬ A D A K C B B D A D
92 39 ad2antrr φ ¬ A D A K C B B D ¬ A D
93 91 92 pm2.65da φ ¬ A D A K C B ¬ B D
94 48 adantr φ ¬ A D A K C B ¬ pInv 𝒢 G C A D
95 78 93 94 3jca φ ¬ A D A K C B C B I pInv 𝒢 G C A ¬ B D ¬ pInv 𝒢 G C A D
96 70 95 impbida φ ¬ A D C B I pInv 𝒢 G C A ¬ B D ¬ pInv 𝒢 G C A D A K C B
97 38 56 96 3bitr3d φ ¬ A D A hp 𝒢 G D B A K C B
98 97 pm5.32da φ ¬ A D A hp 𝒢 G D B ¬ A D A K C B
99 simprr φ ¬ A D A hp 𝒢 G D B A hp 𝒢 G D B
100 4 adantr φ A hp 𝒢 G D B G 𝒢 Tarski
101 5 adantr φ A hp 𝒢 G D B D ran L
102 6 adantr φ A hp 𝒢 G D B A P
103 8 adantr φ A hp 𝒢 G D B B P
104 simpr φ A hp 𝒢 G D B A hp 𝒢 G D B
105 1 2 3 7 100 101 102 103 104 hpgne1 φ A hp 𝒢 G D B ¬ A D
106 105 104 jca φ A hp 𝒢 G D B ¬ A D A hp 𝒢 G D B
107 99 106 impbida φ ¬ A D A hp 𝒢 G D B A hp 𝒢 G D B
108 13 98 107 3bitr2rd φ A hp 𝒢 G D B A K C B ¬ A D