| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
|
| 2 |
|
simpl1 |
|
| 3 |
1 2
|
subcld |
|
| 4 |
|
simpr3 |
|
| 5 |
|
simpr1 |
|
| 6 |
3 4 5
|
subdid |
|
| 7 |
1 2 4
|
subdird |
|
| 8 |
1 2 5
|
subdird |
|
| 9 |
7 8
|
oveq12d |
|
| 10 |
|
simp2 |
|
| 11 |
|
simp3 |
|
| 12 |
|
mulcl |
|
| 13 |
10 11 12
|
syl2an |
|
| 14 |
|
simp1 |
|
| 15 |
|
mulcl |
|
| 16 |
14 11 15
|
syl2an |
|
| 17 |
13 16
|
subcld |
|
| 18 |
|
simp1 |
|
| 19 |
|
mulcl |
|
| 20 |
10 18 19
|
syl2an |
|
| 21 |
|
mulcl |
|
| 22 |
14 18 21
|
syl2an |
|
| 23 |
17 20 22
|
subsub3d |
|
| 24 |
17 22 20
|
addsubd |
|
| 25 |
9 23 24
|
3eqtrrd |
|
| 26 |
13 16 20
|
subsub4d |
|
| 27 |
26
|
oveq1d |
|
| 28 |
6 25 27
|
3eqtr2d |
|
| 29 |
|
simpr2 |
|
| 30 |
29 5
|
subcld |
|
| 31 |
|
simpl3 |
|
| 32 |
31 2
|
subcld |
|
| 33 |
30 32
|
mulcomd |
|
| 34 |
32 29 5
|
subdid |
|
| 35 |
31 2 29
|
subdird |
|
| 36 |
31 2 5
|
subdird |
|
| 37 |
35 36
|
oveq12d |
|
| 38 |
|
simp3 |
|
| 39 |
|
simp2 |
|
| 40 |
|
mulcl |
|
| 41 |
38 39 40
|
syl2an |
|
| 42 |
|
mulcl |
|
| 43 |
14 39 42
|
syl2an |
|
| 44 |
41 43
|
subcld |
|
| 45 |
|
mulcl |
|
| 46 |
38 18 45
|
syl2an |
|
| 47 |
44 46 22
|
subsub3d |
|
| 48 |
44 22 46
|
addsubd |
|
| 49 |
37 47 48
|
3eqtrrd |
|
| 50 |
41 43 46
|
subsub4d |
|
| 51 |
50
|
oveq1d |
|
| 52 |
49 51
|
eqtr3d |
|
| 53 |
33 34 52
|
3eqtrd |
|
| 54 |
28 53
|
eqeq12d |
|
| 55 |
16 20
|
addcld |
|
| 56 |
13 55
|
subcld |
|
| 57 |
43 46
|
addcld |
|
| 58 |
41 57
|
subcld |
|
| 59 |
56 58 22
|
addcan2d |
|
| 60 |
54 59
|
bitrd |
|