Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|
2 |
|
mirval.d |
|
3 |
|
mirval.i |
|
4 |
|
mirval.l |
|
5 |
|
mirval.s |
|
6 |
|
mirval.g |
|
7 |
|
colmid.m |
|
8 |
|
colmid.a |
|
9 |
|
colmid.b |
|
10 |
|
colmid.x |
|
11 |
|
colmid.c |
|
12 |
|
colmid.d |
|
13 |
|
animorr |
|
14 |
6
|
ad2antrr |
|
15 |
10
|
ad2antrr |
|
16 |
8
|
ad2antrr |
|
17 |
9
|
ad2antrr |
|
18 |
12
|
ad2antrr |
|
19 |
18
|
eqcomd |
|
20 |
|
simpr |
|
21 |
1 2 3 14 16 15 17 20
|
tgbtwncom |
|
22 |
1 2 3 4 5 14 15 7 16 17 19 21
|
ismir |
|
23 |
22
|
orcd |
|
24 |
6
|
adantr |
|
25 |
9
|
adantr |
|
26 |
8
|
adantr |
|
27 |
10
|
adantr |
|
28 |
|
simpr |
|
29 |
1 2 3 24 27 26 25 28
|
tgbtwncom |
|
30 |
1 2 3 24 26 27
|
tgbtwntriv1 |
|
31 |
1 2 3 6 10 8 10 9 12
|
tgcgrcomlr |
|
32 |
31
|
adantr |
|
33 |
32
|
eqcomd |
|
34 |
|
eqidd |
|
35 |
1 2 3 24 25 26 27 26 26 27 29 30 33 34
|
tgcgrsub |
|
36 |
1 2 3 24 25 26 26 35
|
axtgcgrid |
|
37 |
36
|
eqcomd |
|
38 |
37
|
adantlr |
|
39 |
38
|
olcd |
|
40 |
6
|
adantr |
|
41 |
8
|
adantr |
|
42 |
9
|
adantr |
|
43 |
10
|
adantr |
|
44 |
|
simpr |
|
45 |
1 2 3 40 42 43
|
tgbtwntriv1 |
|
46 |
31
|
adantr |
|
47 |
|
eqidd |
|
48 |
1 2 3 40 41 42 43 42 42 43 44 45 46 47
|
tgcgrsub |
|
49 |
1 2 3 40 41 42 42 48
|
axtgcgrid |
|
50 |
49
|
adantlr |
|
51 |
50
|
olcd |
|
52 |
|
df-ne |
|
53 |
11
|
orcomd |
|
54 |
53
|
orcanai |
|
55 |
52 54
|
sylan2b |
|
56 |
6
|
adantr |
|
57 |
8
|
adantr |
|
58 |
9
|
adantr |
|
59 |
|
simpr |
|
60 |
10
|
adantr |
|
61 |
1 4 3 56 57 58 59 60
|
tgellng |
|
62 |
55 61
|
mpbid |
|
63 |
23 39 51 62
|
mpjao3dan |
|
64 |
13 63
|
pm2.61dane |
|