Metamath Proof Explorer


Theorem colmid

Description: Colinearity and equidistance implies midpoint. Theorem 7.20 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
colmid.m M = S X
colmid.a φ A P
colmid.b φ B P
colmid.x φ X P
colmid.c φ X A L B A = B
colmid.d φ X - ˙ A = X - ˙ B
Assertion colmid φ B = M A A = B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 colmid.m M = S X
8 colmid.a φ A P
9 colmid.b φ B P
10 colmid.x φ X P
11 colmid.c φ X A L B A = B
12 colmid.d φ X - ˙ A = X - ˙ B
13 animorr φ A = B B = M A A = B
14 6 ad2antrr φ A B X A I B G 𝒢 Tarski
15 10 ad2antrr φ A B X A I B X P
16 8 ad2antrr φ A B X A I B A P
17 9 ad2antrr φ A B X A I B B P
18 12 ad2antrr φ A B X A I B X - ˙ A = X - ˙ B
19 18 eqcomd φ A B X A I B X - ˙ B = X - ˙ A
20 simpr φ A B X A I B X A I B
21 1 2 3 14 16 15 17 20 tgbtwncom φ A B X A I B X B I A
22 1 2 3 4 5 14 15 7 16 17 19 21 ismir φ A B X A I B B = M A
23 22 orcd φ A B X A I B B = M A A = B
24 6 adantr φ A X I B G 𝒢 Tarski
25 9 adantr φ A X I B B P
26 8 adantr φ A X I B A P
27 10 adantr φ A X I B X P
28 simpr φ A X I B A X I B
29 1 2 3 24 27 26 25 28 tgbtwncom φ A X I B A B I X
30 1 2 3 24 26 27 tgbtwntriv1 φ A X I B A A I X
31 1 2 3 6 10 8 10 9 12 tgcgrcomlr φ A - ˙ X = B - ˙ X
32 31 adantr φ A X I B A - ˙ X = B - ˙ X
33 32 eqcomd φ A X I B B - ˙ X = A - ˙ X
34 eqidd φ A X I B A - ˙ X = A - ˙ X
35 1 2 3 24 25 26 27 26 26 27 29 30 33 34 tgcgrsub φ A X I B B - ˙ A = A - ˙ A
36 1 2 3 24 25 26 26 35 axtgcgrid φ A X I B B = A
37 36 eqcomd φ A X I B A = B
38 37 adantlr φ A B A X I B A = B
39 38 olcd φ A B A X I B B = M A A = B
40 6 adantr φ B A I X G 𝒢 Tarski
41 8 adantr φ B A I X A P
42 9 adantr φ B A I X B P
43 10 adantr φ B A I X X P
44 simpr φ B A I X B A I X
45 1 2 3 40 42 43 tgbtwntriv1 φ B A I X B B I X
46 31 adantr φ B A I X A - ˙ X = B - ˙ X
47 eqidd φ B A I X B - ˙ X = B - ˙ X
48 1 2 3 40 41 42 43 42 42 43 44 45 46 47 tgcgrsub φ B A I X A - ˙ B = B - ˙ B
49 1 2 3 40 41 42 42 48 axtgcgrid φ B A I X A = B
50 49 adantlr φ A B B A I X A = B
51 50 olcd φ A B B A I X B = M A A = B
52 df-ne A B ¬ A = B
53 11 orcomd φ A = B X A L B
54 53 orcanai φ ¬ A = B X A L B
55 52 54 sylan2b φ A B X A L B
56 6 adantr φ A B G 𝒢 Tarski
57 8 adantr φ A B A P
58 9 adantr φ A B B P
59 simpr φ A B A B
60 10 adantr φ A B X P
61 1 4 3 56 57 58 59 60 tgellng φ A B X A L B X A I B A X I B B A I X
62 55 61 mpbid φ A B X A I B A X I B B A I X
63 23 39 51 62 mpjao3dan φ A B B = M A A = B
64 13 63 pm2.61dane φ B = M A A = B