Step |
Hyp |
Ref |
Expression |
1 |
|
hpgid.p |
|
2 |
|
hpgid.i |
|
3 |
|
hpgid.l |
|
4 |
|
hpgid.g |
|
5 |
|
hpgid.d |
|
6 |
|
hpgid.a |
|
7 |
|
hpgid.o |
|
8 |
|
colopp.b |
|
9 |
|
colopp.p |
|
10 |
|
colopp.1 |
|
11 |
4
|
ad3antrrr |
|
12 |
6
|
ad3antrrr |
|
13 |
8
|
ad3antrrr |
|
14 |
|
eqid |
|
15 |
5
|
ad3antrrr |
|
16 |
|
simpllr |
|
17 |
|
simplr |
|
18 |
|
eleq1w |
|
19 |
18
|
adantl |
|
20 |
|
simpr |
|
21 |
17 19 20
|
rspcedvd |
|
22 |
1 14 2 7 6 8
|
islnopp |
|
23 |
22
|
ad3antrrr |
|
24 |
16 21 23
|
mpbir2and |
|
25 |
1 14 2 7 3 15 11 12 13 24
|
oppne3 |
|
26 |
1 2 3 11 12 13 25
|
tgelrnln |
|
27 |
1 2 3 11 12 13 25
|
tglinerflx1 |
|
28 |
16
|
simpld |
|
29 |
|
nelne1 |
|
30 |
27 28 29
|
syl2anc |
|
31 |
25
|
neneqd |
|
32 |
10
|
orcomd |
|
33 |
32
|
ord |
|
34 |
33
|
ad3antrrr |
|
35 |
31 34
|
mpd |
|
36 |
9
|
ad3antrrr |
|
37 |
35 36
|
elind |
|
38 |
1 3 2 11 15 17
|
tglnpt |
|
39 |
1 2 3 11 12 13 38 25 20
|
btwnlng1 |
|
40 |
39 17
|
elind |
|
41 |
1 2 3 11 26 15 30 37 40
|
tglineineq |
|
42 |
41 20
|
eqeltrd |
|
43 |
42
|
adantllr |
|
44 |
|
simpr |
|
45 |
18
|
cbvrexvw |
|
46 |
44 45
|
sylib |
|
47 |
43 46
|
r19.29a |
|
48 |
9
|
adantr |
|
49 |
|
simpr |
|
50 |
49
|
eleq1d |
|
51 |
|
simpr |
|
52 |
48 50 51
|
rspcedvd |
|
53 |
52
|
adantlr |
|
54 |
47 53
|
impbida |
|
55 |
54
|
pm5.32da |
|
56 |
|
3anrot |
|
57 |
|
df-3an |
|
58 |
56 57
|
bitri |
|
59 |
58
|
a1i |
|
60 |
55 22 59
|
3bitr4d |
|