Metamath Proof Explorer


Theorem colperp

Description: Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
colperp.a φ A P
colperp.b φ B P
colperp.c φ C P
colperp.1 φ A L B 𝒢 G D
colperp.2 φ C A L B A = B
colperp.3 φ A C
Assertion colperp φ A L C 𝒢 G D

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 colperp.a φ A P
7 colperp.b φ B P
8 colperp.c φ C P
9 colperp.1 φ A L B 𝒢 G D
10 colperp.2 φ C A L B A = B
11 colperp.3 φ A C
12 4 5 9 perpln1 φ A L B ran L
13 1 3 4 5 6 7 12 tglnne φ A B
14 1 3 4 5 6 7 13 tglinerflx1 φ A A L B
15 13 neneqd φ ¬ A = B
16 10 orcomd φ A = B C A L B
17 16 ord φ ¬ A = B C A L B
18 15 17 mpd φ C A L B
19 1 3 4 5 6 8 11 11 12 14 18 tglinethru φ A L B = A L C
20 19 9 eqbrtrrd φ A L C 𝒢 G D