Metamath Proof Explorer


Theorem colperpex

Description: In dimension 2 and above, on a line ( A L B ) there is always a perpendicular P from A on a given plane (here given by C , in case C does not lie on the line). Theorem 8.21 of Schwabhauser p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
colperpex.1 φ A P
colperpex.2 φ B P
colperpex.3 φ C P
colperpex.4 φ A B
colperpex.5 φ G Dim 𝒢 2
Assertion colperpex φ p P A L p 𝒢 G A L B t P t A L B A = B t C I p

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 colperpex.1 φ A P
7 colperpex.2 φ B P
8 colperpex.3 φ C P
9 colperpex.4 φ A B
10 colperpex.5 φ G Dim 𝒢 2
11 5 ad3antrrr φ C A L B d P ¬ d A L B G 𝒢 Tarski
12 6 ad3antrrr φ C A L B d P ¬ d A L B A P
13 7 ad3antrrr φ C A L B d P ¬ d A L B B P
14 simplr φ C A L B d P ¬ d A L B d P
15 9 ad3antrrr φ C A L B d P ¬ d A L B A B
16 simpr φ C A L B d P ¬ d A L B ¬ d A L B
17 1 2 3 4 11 12 13 14 15 16 colperpexlem3 φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p
18 simprl φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p A L p 𝒢 G A L B
19 8 ad5antr φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p C P
20 simp-5r φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p C A L B
21 20 orcd φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p C A L B A = B
22 5 ad5antr φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p G 𝒢 Tarski
23 simplr φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p p P
24 1 2 3 22 19 23 tgbtwntriv1 φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p C C I p
25 eleq1 t = C t A L B C A L B
26 25 orbi1d t = C t A L B A = B C A L B A = B
27 eleq1 t = C t C I p C C I p
28 26 27 anbi12d t = C t A L B A = B t C I p C A L B A = B C C I p
29 28 rspcev C P C A L B A = B C C I p t P t A L B A = B t C I p
30 19 21 24 29 syl12anc φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p t P t A L B A = B t C I p
31 18 30 jca φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p A L p 𝒢 G A L B t P t A L B A = B t C I p
32 31 ex φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p A L p 𝒢 G A L B t P t A L B A = B t C I p
33 32 reximdva φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B s P s A L B A = B s d I p p P A L p 𝒢 G A L B t P t A L B A = B t C I p
34 17 33 mpd φ C A L B d P ¬ d A L B p P A L p 𝒢 G A L B t P t A L B A = B t C I p
35 5 adantr φ C A L B G 𝒢 Tarski
36 10 adantr φ C A L B G Dim 𝒢 2
37 6 adantr φ C A L B A P
38 7 adantr φ C A L B B P
39 9 adantr φ C A L B A B
40 1 3 4 35 36 37 38 39 tglowdim2ln φ C A L B d P ¬ d A L B
41 34 40 r19.29a φ C A L B p P A L p 𝒢 G A L B t P t A L B A = B t C I p
42 5 adantr φ ¬ C A L B G 𝒢 Tarski
43 6 adantr φ ¬ C A L B A P
44 7 adantr φ ¬ C A L B B P
45 8 adantr φ ¬ C A L B C P
46 9 adantr φ ¬ C A L B A B
47 simpr φ ¬ C A L B ¬ C A L B
48 1 2 3 4 42 43 44 45 46 47 colperpexlem3 φ ¬ C A L B p P A L p 𝒢 G A L B t P t A L B A = B t C I p
49 41 48 pm2.61dan φ p P A L p 𝒢 G A L B t P t A L B A = B t C I p