Metamath Proof Explorer


Theorem colperpexlem2

Description: Lemma for colperpex . Second part of lemma 8.20 of Schwabhauser p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
colperpexlem.s S = pInv 𝒢 G
colperpexlem.m M = S A
colperpexlem.n N = S B
colperpexlem.k K = S Q
colperpexlem.a φ A P
colperpexlem.b φ B P
colperpexlem.c φ C P
colperpexlem.q φ Q P
colperpexlem.1 φ ⟨“ ABC ”⟩ 𝒢 G
colperpexlem.2 φ K M C = N C
colperpexlem2.e φ B C
Assertion colperpexlem2 φ A Q

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 colperpexlem.s S = pInv 𝒢 G
7 colperpexlem.m M = S A
8 colperpexlem.n N = S B
9 colperpexlem.k K = S Q
10 colperpexlem.a φ A P
11 colperpexlem.b φ B P
12 colperpexlem.c φ C P
13 colperpexlem.q φ Q P
14 colperpexlem.1 φ ⟨“ ABC ”⟩ 𝒢 G
15 colperpexlem.2 φ K M C = N C
16 colperpexlem2.e φ B C
17 simpr φ A = Q A = Q
18 17 fveq2d φ A = Q S A = S Q
19 18 7 9 3eqtr4g φ A = Q M = K
20 19 fveq1d φ A = Q M M C = K M C
21 1 2 3 4 6 5 10 7 12 mirmir φ M M C = C
22 21 adantr φ A = Q M M C = C
23 15 adantr φ A = Q K M C = N C
24 20 22 23 3eqtr3rd φ A = Q N C = C
25 1 2 3 4 6 5 11 8 12 mirinv φ N C = C B = C
26 25 adantr φ A = Q N C = C B = C
27 24 26 mpbid φ A = Q B = C
28 27 ex φ A = Q B = C
29 28 necon3ad φ B C ¬ A = Q
30 16 29 mpd φ ¬ A = Q
31 30 neqned φ A Q