Metamath Proof Explorer


Theorem com5l

Description: Commutation of antecedents. Rotate left. (Contributed by Jeff Hankins, 28-Jun-2009) (Proof shortened by Wolf Lammen, 29-Jul-2012)

Ref Expression
Hypothesis com5.1 φ ψ χ θ τ η
Assertion com5l ψ χ θ τ φ η

Proof

Step Hyp Ref Expression
1 com5.1 φ ψ χ θ τ η
2 1 com4l ψ χ θ φ τ η
3 2 com45 ψ χ θ τ φ η