Metamath Proof Explorer


Theorem comet

Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypotheses comet.1 φ D ∞Met X
comet.2 φ F : 0 +∞ *
comet.3 φ x 0 +∞ F x = 0 x = 0
comet.4 φ x 0 +∞ y 0 +∞ x y F x F y
comet.5 φ x 0 +∞ y 0 +∞ F x + 𝑒 y F x + 𝑒 F y
Assertion comet φ F D ∞Met X

Proof

Step Hyp Ref Expression
1 comet.1 φ D ∞Met X
2 comet.2 φ F : 0 +∞ *
3 comet.3 φ x 0 +∞ F x = 0 x = 0
4 comet.4 φ x 0 +∞ y 0 +∞ x y F x F y
5 comet.5 φ x 0 +∞ y 0 +∞ F x + 𝑒 y F x + 𝑒 F y
6 1 elfvexd φ X V
7 xmetf D ∞Met X D : X × X *
8 1 7 syl φ D : X × X *
9 8 ffnd φ D Fn X × X
10 xmetcl D ∞Met X a X b X a D b *
11 xmetge0 D ∞Met X a X b X 0 a D b
12 elxrge0 a D b 0 +∞ a D b * 0 a D b
13 10 11 12 sylanbrc D ∞Met X a X b X a D b 0 +∞
14 13 3expb D ∞Met X a X b X a D b 0 +∞
15 1 14 sylan φ a X b X a D b 0 +∞
16 15 ralrimivva φ a X b X a D b 0 +∞
17 ffnov D : X × X 0 +∞ D Fn X × X a X b X a D b 0 +∞
18 9 16 17 sylanbrc φ D : X × X 0 +∞
19 2 18 fcod φ F D : X × X *
20 opelxpi a X b X a b X × X
21 fvco3 D : X × X * a b X × X F D a b = F D a b
22 8 20 21 syl2an φ a X b X F D a b = F D a b
23 df-ov a F D b = F D a b
24 df-ov a D b = D a b
25 24 fveq2i F a D b = F D a b
26 22 23 25 3eqtr4g φ a X b X a F D b = F a D b
27 26 eqeq1d φ a X b X a F D b = 0 F a D b = 0
28 fveq2 x = a D b F x = F a D b
29 28 eqeq1d x = a D b F x = 0 F a D b = 0
30 eqeq1 x = a D b x = 0 a D b = 0
31 29 30 bibi12d x = a D b F x = 0 x = 0 F a D b = 0 a D b = 0
32 3 ralrimiva φ x 0 +∞ F x = 0 x = 0
33 32 adantr φ a X b X x 0 +∞ F x = 0 x = 0
34 31 33 15 rspcdva φ a X b X F a D b = 0 a D b = 0
35 xmeteq0 D ∞Met X a X b X a D b = 0 a = b
36 35 3expb D ∞Met X a X b X a D b = 0 a = b
37 1 36 sylan φ a X b X a D b = 0 a = b
38 27 34 37 3bitrd φ a X b X a F D b = 0 a = b
39 2 adantr φ a X b X c X F : 0 +∞ *
40 15 3adantr3 φ a X b X c X a D b 0 +∞
41 39 40 ffvelrnd φ a X b X c X F a D b *
42 18 adantr φ a X b X c X D : X × X 0 +∞
43 simpr3 φ a X b X c X c X
44 simpr1 φ a X b X c X a X
45 42 43 44 fovrnd φ a X b X c X c D a 0 +∞
46 simpr2 φ a X b X c X b X
47 42 43 46 fovrnd φ a X b X c X c D b 0 +∞
48 ge0xaddcl c D a 0 +∞ c D b 0 +∞ c D a + 𝑒 c D b 0 +∞
49 45 47 48 syl2anc φ a X b X c X c D a + 𝑒 c D b 0 +∞
50 39 49 ffvelrnd φ a X b X c X F c D a + 𝑒 c D b *
51 39 45 ffvelrnd φ a X b X c X F c D a *
52 39 47 ffvelrnd φ a X b X c X F c D b *
53 51 52 xaddcld φ a X b X c X F c D a + 𝑒 F c D b *
54 3anrot c X a X b X a X b X c X
55 xmettri2 D ∞Met X c X a X b X a D b c D a + 𝑒 c D b
56 54 55 sylan2br D ∞Met X a X b X c X a D b c D a + 𝑒 c D b
57 1 56 sylan φ a X b X c X a D b c D a + 𝑒 c D b
58 4 ralrimivva φ x 0 +∞ y 0 +∞ x y F x F y
59 58 adantr φ a X b X c X x 0 +∞ y 0 +∞ x y F x F y
60 breq1 x = a D b x y a D b y
61 28 breq1d x = a D b F x F y F a D b F y
62 60 61 imbi12d x = a D b x y F x F y a D b y F a D b F y
63 breq2 y = c D a + 𝑒 c D b a D b y a D b c D a + 𝑒 c D b
64 fveq2 y = c D a + 𝑒 c D b F y = F c D a + 𝑒 c D b
65 64 breq2d y = c D a + 𝑒 c D b F a D b F y F a D b F c D a + 𝑒 c D b
66 63 65 imbi12d y = c D a + 𝑒 c D b a D b y F a D b F y a D b c D a + 𝑒 c D b F a D b F c D a + 𝑒 c D b
67 62 66 rspc2va a D b 0 +∞ c D a + 𝑒 c D b 0 +∞ x 0 +∞ y 0 +∞ x y F x F y a D b c D a + 𝑒 c D b F a D b F c D a + 𝑒 c D b
68 40 49 59 67 syl21anc φ a X b X c X a D b c D a + 𝑒 c D b F a D b F c D a + 𝑒 c D b
69 57 68 mpd φ a X b X c X F a D b F c D a + 𝑒 c D b
70 5 ralrimivva φ x 0 +∞ y 0 +∞ F x + 𝑒 y F x + 𝑒 F y
71 70 adantr φ a X b X c X x 0 +∞ y 0 +∞ F x + 𝑒 y F x + 𝑒 F y
72 fvoveq1 x = c D a F x + 𝑒 y = F c D a + 𝑒 y
73 fveq2 x = c D a F x = F c D a
74 73 oveq1d x = c D a F x + 𝑒 F y = F c D a + 𝑒 F y
75 72 74 breq12d x = c D a F x + 𝑒 y F x + 𝑒 F y F c D a + 𝑒 y F c D a + 𝑒 F y
76 oveq2 y = c D b c D a + 𝑒 y = c D a + 𝑒 c D b
77 76 fveq2d y = c D b F c D a + 𝑒 y = F c D a + 𝑒 c D b
78 fveq2 y = c D b F y = F c D b
79 78 oveq2d y = c D b F c D a + 𝑒 F y = F c D a + 𝑒 F c D b
80 77 79 breq12d y = c D b F c D a + 𝑒 y F c D a + 𝑒 F y F c D a + 𝑒 c D b F c D a + 𝑒 F c D b
81 75 80 rspc2va c D a 0 +∞ c D b 0 +∞ x 0 +∞ y 0 +∞ F x + 𝑒 y F x + 𝑒 F y F c D a + 𝑒 c D b F c D a + 𝑒 F c D b
82 45 47 71 81 syl21anc φ a X b X c X F c D a + 𝑒 c D b F c D a + 𝑒 F c D b
83 41 50 53 69 82 xrletrd φ a X b X c X F a D b F c D a + 𝑒 F c D b
84 26 3adantr3 φ a X b X c X a F D b = F a D b
85 8 adantr φ a X b X c X D : X × X *
86 43 44 opelxpd φ a X b X c X c a X × X
87 85 86 fvco3d φ a X b X c X F D c a = F D c a
88 df-ov c F D a = F D c a
89 df-ov c D a = D c a
90 89 fveq2i F c D a = F D c a
91 87 88 90 3eqtr4g φ a X b X c X c F D a = F c D a
92 43 46 opelxpd φ a X b X c X c b X × X
93 85 92 fvco3d φ a X b X c X F D c b = F D c b
94 df-ov c F D b = F D c b
95 df-ov c D b = D c b
96 95 fveq2i F c D b = F D c b
97 93 94 96 3eqtr4g φ a X b X c X c F D b = F c D b
98 91 97 oveq12d φ a X b X c X c F D a + 𝑒 c F D b = F c D a + 𝑒 F c D b
99 83 84 98 3brtr4d φ a X b X c X a F D b c F D a + 𝑒 c F D b
100 6 19 38 99 isxmetd φ F D ∞Met X